SPACE FUNCTION RECOVERY OF THE DISTRIBUTION OF COATING INHOMOGENEITIES ACCORDING TO THE DISTRIBUTION FUNCTION ON THE POLISHED SPECIMEN
- 作者: Kokarev S.S.1, Soloviev M.E.1, Baldaev S.L.1, Baldaev L.K.1
-
隶属关系:
- 期: 编号 11 (149) (2023)
- 页面: 3-16
- 栏目: Materials science in mechanical engineering
- URL: https://journals.rcsi.science/2223-4608/article/view/350520
- DOI: https://doi.org/10.30987/2223-4608-2023-3-16
- ID: 350520
如何引用文章
全文:
详细
In the experimental studies of the structure of the special coating layer overlaid on metal applying gas-thermal spraying technique, one of the main methods is the study of polished specimen micrography. According to the computer analysis of microphotographs, it is possible to obtain the distribution function of inhomogeneities in the sample. However, since micrography is a flat image, the resulting function will be two-dimensional, whereas in a real sample, the distribution of defects is described by a three-dimensional function. In this paper, the problem of the space function recovery for the distribution of defects in a gas-thermal coating is viewed on the basis of the analysis of polished specimen micrography. The actual inclusion of an irregular shape is replaced by an effective three-axis ellipsoid. The problem is solved in the general form of reduction of the space function f of inhomogeneities distribution according to their distribution function f P on the cross - sectional plane P, which includes some integral transformation I. It is shown that in the special case of spherical particles, the inversion I^(-1) exists and is an integral transformation of the same type as I. The space distribution of spherical particles is also viewed, which does not depend on the longitudinal coordinate z, where particle sizes are limited at each point by a function R(x,y), depending on the coordinates. This distribution is suitable in its essense to the stationary spraying technology, when in deep layers near the substrate, the coating material melts completely and forms a single melt, while closer to the surface and edges, the parts that are not completely melted form inclusions of noticeable sizes. The reduction of the Fuller distribution law, used to optimize the granulometric composition of powder materials, is viewed as a second example. It is found that the reduction of the density of the ellipsoid distribution function to the section of a flat strip transfers the density of the distribution of centers as original, and the product of Fuller distributions times independent parameters is transformed into the product of distributions times the opposite degree parameters and also the previous values of the parameters of the ellipsoid
作者简介
Sergei Kokarev
Email: vikovl956@mail.ru
ORCID iD: 0000-0001-6944-1400
Mikhail Soloviev
Email: vikovl956@mail.ru
ORCID iD: 0000-0002-8840-248X
doctor of physical and mathematical sciences 1993
Sergey Baldaev
Email: vikovl956@mail.ru
ORCID iD: 0000-0002-1917-7979
candidate of technical sciences
Lev Baldaev
编辑信件的主要联系方式.
Email: vikovl956@mail.ru
ORCID iD: 0000-0002-9084-8771
doctor of technical sciences
参考
Кудинов В.В., Бобров Г.В. Нанесение покрытий напылением. Теория, технология и оборудование. М.: Металлургия, 1992. 432 с. EDN: TJNRWT Газотермическое напыление / под общей ред. Л.Х. Балдаева. М.: Маркет ДС, 2007. 344 с. Davis J.R. Handbook of thermal spray technology. ASM International, 2004. 338 p. Пузряков А.Ф. Теоретические основы технологии плазменного напыления. М.: Изд-во МГТУ им. Н.Е. Баумана, 2008. 360 с. EDN: QNBVKX Pinkerton A.J. Advances in the modeling of laser direct metal deposition // Journal of Laser Applications. 2015. V. 27. S15001. https://doi.org/10.2351/1.4815992. EDN: UPLWVF Yu T., Yang L., Zhao Yu., Sun J., Li B. Experimental research and multi-response multi-parameter ptimization of laser cladding Fe313 // Optics and Laser Technology. 2018. V. 108. P. 321-332. https://doi.org/10.1016/j.optlastec.2018.06.030. Sawant M.S., Jain N.K. Evaluation of stellite coatings by µ-PTA powder, laser, and PTA deposition processes // Materials and Manufacturing Processes. 2017. V. 33:10. P. 1043-1050. http://dx.doi.org/10.1080/10426914.2017.1364764. Alaluss K., Mayr P. Additive Manufacturing of Complex Components through 3D Plasma Metal Deposition-A Simulative Approach // Metals. 2019. V. 9. P. 574-693. https://doi.org/10.3390/met9050574. Prozorova M.S., Kovaleva M.G., Arseenko M. Yu., et al. Microstructure and mechanical properties of alumina powder coatings by a new multi-chamber detonation sprayer // Surface Review and Letters. 2016. V. 23. No. 01. P. 1550088-1-1550088-7. https://doi.org/ 10.1142/S0218625X15500882. EDN: SCVPRB Murphy T., Schade C.T., Zwiren, A. Using automated image analysis for characterization of additive manufacturing powders // International Journal of Powder Metallurgy. 2018. V. 54. P. 47-59. Bakas G., Dimitriadis S., Deligiannis S. et al. A Tool for Rapid Analysis Using Image Processing and Artificial Intelligence: Automated Interoperable Characterization Data of Metal Powder for Additive Manufacturing with SEM Case // Metals. 2022. V.12. P. 1816-1-1816-15. https://doi.org/ 10.3390/met12111816. EDN: QURYOP Соловьев М.Е., Раухваргер А.Б., Балдаев С.Л., Балдаев Л.Х., Мищенко В.И. Влияние условий плазменного напыления порошка оксида алюминия на пористость и электрическое сопротивление покрытия // Наукоёмкие технологии в машиностроении. 2023. № 5 (143). С. 22-32. doi: 10.30987/2223-4608-2023-22-32; EDN: ODYFKH Zhu H., Huang Y., Ren J., Zhang B. et al. Bridging Structural Inhomogeneity to Functionality: Pair Distribution Function Methods for Functional Materials Development // Advanced Science. 2021. V. 17. P.2003534-1-2003534-31. Tsitsiashvili G., Osipova M. Asymptotic Relations in Applied Models of Inhomogeneous Poisson Point Flows // Mathematics. 2023. V.11. P. 1881-1-1881-10. https://doi.org/10.3390/math11081881. Sluzalec A. Stochastic characteristics of powder metallurgy processing // Applied Mathematical Modelling. 2015. V. 39, No 23-24. P. 7303-7308. https://doi.org/10.1016/j.apm.2015.03.013.
补充文件


