SPACE FUNCTION RECOVERY OF THE DISTRIBUTION OF COATING INHOMOGENEITIES ACCORDING TO THE DISTRIBUTION FUNCTION ON THE POLISHED SPECIMEN

详细

In the experimental studies of the structure of the special coating layer overlaid on metal applying gas-thermal spraying technique, one of the main methods is the study of polished specimen micrography. According to the computer analysis of microphotographs, it is possible to obtain the distribution function of inhomogeneities in the sample. However, since micrography is a flat image, the resulting function will be two-dimensional, whereas in a real sample, the distribution of defects is described by a three-dimensional function. In this paper, the problem of the space function recovery for the distribution of defects in a gas-thermal coating is viewed on the basis of the analysis of polished specimen micrography. The actual inclusion of an irregular shape is replaced by an effective three-axis ellipsoid. The problem is solved in the general form of reduction of the space function f of inhomogeneities distribution according to their distribution function f P on the cross - sectional plane P, which includes some integral transformation I. It is shown that in the special case of spherical particles, the inversion I^(-1) exists and is an integral transformation of the same type as I. The space distribution of spherical particles is also viewed, which does not depend on the longitudinal coordinate z, where particle sizes are limited at each point by a function R(x,y), depending on the coordinates. This distribution is suitable in its essense to the stationary spraying technology, when in deep layers near the substrate, the coating material melts completely and forms a single melt, while closer to the surface and edges, the parts that are not completely melted form inclusions of noticeable sizes. The reduction of the Fuller distribution law, used to optimize the granulometric composition of powder materials, is viewed as a second example. It is found that the reduction of the density of the ellipsoid distribution function to the section of a flat strip transfers the density of the distribution of centers as original, and the product of Fuller distributions times independent parameters is transformed into the product of distributions times the opposite degree parameters and also the previous values of the parameters of the ellipsoid

作者简介

Sergei Kokarev

Email: vikovl956@mail.ru
ORCID iD: 0000-0001-6944-1400

Mikhail Soloviev

Email: vikovl956@mail.ru
ORCID iD: 0000-0002-8840-248X

doctor of physical and mathematical sciences 1993

Sergey Baldaev

Email: vikovl956@mail.ru
ORCID iD: 0000-0002-1917-7979

candidate of technical sciences

Lev Baldaev

编辑信件的主要联系方式.
Email: vikovl956@mail.ru
ORCID iD: 0000-0002-9084-8771

doctor of technical sciences

参考

  1. Кудинов В.В., Бобров Г.В. Нанесение покрытий напылением. Теория, технология и оборудование. М.: Металлургия, 1992. 432 с. EDN: TJNRWT
  2. Газотермическое напыление / под общей ред. Л.Х. Балдаева. М.: Маркет ДС, 2007. 344 с.
  3. Davis J.R. Handbook of thermal spray technology. ASM International, 2004. 338 p.
  4. Пузряков А.Ф. Теоретические основы технологии плазменного напыления. М.: Изд-во МГТУ им. Н.Е. Баумана, 2008. 360 с. EDN: QNBVKX
  5. Pinkerton A.J. Advances in the modeling of laser direct metal deposition // Journal of Laser Applications. 2015. V. 27. S15001. https://doi.org/10.2351/1.4815992. EDN: UPLWVF
  6. Yu T., Yang L., Zhao Yu., Sun J., Li B. Experimental research and multi-response multi-parameter ptimization of laser cladding Fe313 // Optics and Laser Technology. 2018. V. 108. P. 321-332. https://doi.org/10.1016/j.optlastec.2018.06.030.
  7. Sawant M.S., Jain N.K. Evaluation of stellite coatings by µ-PTA powder, laser, and PTA deposition processes // Materials and Manufacturing Processes. 2017. V. 33:10. P. 1043-1050. http://dx.doi.org/10.1080/10426914.2017.1364764.
  8. Alaluss K., Mayr P. Additive Manufacturing of Complex Components through 3D Plasma Metal Deposition-A Simulative Approach // Metals. 2019. V. 9. P. 574-693. https://doi.org/10.3390/met9050574.
  9. Prozorova M.S., Kovaleva M.G., Arseenko M. Yu., et al. Microstructure and mechanical properties of alumina powder coatings by a new multi-chamber detonation sprayer // Surface Review and Letters. 2016. V. 23. No. 01. P. 1550088-1-1550088-7. https://doi.org/ 10.1142/S0218625X15500882. EDN: SCVPRB
  10. Murphy T., Schade C.T., Zwiren, A. Using automated image analysis for characterization of additive manufacturing powders // International Journal of Powder Metallurgy. 2018. V. 54. P. 47-59.
  11. Bakas G., Dimitriadis S., Deligiannis S. et al. A Tool for Rapid Analysis Using Image Processing and Artificial Intelligence: Automated Interoperable Characterization Data of Metal Powder for Additive Manufacturing with SEM Case // Metals. 2022. V.12. P. 1816-1-1816-15. https://doi.org/ 10.3390/met12111816. EDN: QURYOP
  12. Соловьев М.Е., Раухваргер А.Б., Балдаев С.Л., Балдаев Л.Х., Мищенко В.И. Влияние условий плазменного напыления порошка оксида алюминия на пористость и электрическое сопротивление покрытия // Наукоёмкие технологии в машиностроении. 2023. № 5 (143). С. 22-32. doi: 10.30987/2223-4608-2023-22-32; EDN: ODYFKH
  13. Zhu H., Huang Y., Ren J., Zhang B. et al. Bridging Structural Inhomogeneity to Functionality: Pair Distribution Function Methods for Functional Materials Development // Advanced Science. 2021. V. 17. P.2003534-1-2003534-31.
  14. Tsitsiashvili G., Osipova M. Asymptotic Relations in Applied Models of Inhomogeneous Poisson Point Flows // Mathematics. 2023. V.11. P. 1881-1-1881-10. https://doi.org/10.3390/math11081881.
  15. Sluzalec A. Stochastic characteristics of powder metallurgy processing // Applied Mathematical Modelling. 2015. V. 39, No 23-24. P. 7303-7308. https://doi.org/10.1016/j.apm.2015.03.013.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».