ПРИМЕНЕНИЕ УЛЬТРАЗВУКА В ПРОЦЕССЕ АДДИТИВНОГО ПРОИЗВОДСТВА ПЛАСТИКОВЫХ ДЕТАЛЕЙ
- Авторы: Нигметзянов Р.И.1, Приходько В.М.1, Сундуков С.К.1, Клименко В.А.2, Кольдюшов В.К.1
-
Учреждения:
- Московский автомобильно-дорожный государственный технический университет (МАДИ)
- Национальный исследовательский Томский государственный университет
- Выпуск: № 12 (150) (2023)
- Страницы: 15-22
- Раздел: Аддитивные технологии и лазерная обработка
- URL: https://journals.rcsi.science/2223-4608/article/view/350527
- DOI: https://doi.org/10.30987/2223-4608-2023-15-22
- ID: 350527
Цитировать
Полный текст
Аннотация
Несмотря на огромные перспективы послойного синтеза изделий, позволяющего производить детали уникальной формы, широкому распространению метода препятствуют сложности, связанные с обеспечением микрогеометрии поверхности изделия, которая в связи с особенностями послойного производства имеет высокую шероховатость, а механические методы обработки зачастую не позволяют производить постобработку сложнопрофильных элементов. В статье рассмотрена проблема обеспечения качества поверхностного слоя пластиковых деталей, полученных аддитивными технологиями. С этой целью предлагается использовать технологии ультразвуковой обработки. Проанализированы существующие методы применения ультразвуковых колебаний при производстве пластиковых деталей: изготовление проволоки для 3D-печати с наполнителями, что приводит к повышению механических свойств изделия, и жидкостная обработка погружённого в растворитель изделия с целью удаления поддерживающих элементов. Проведены исследования по финишной обработке деталей в аэрозоле растворителя, полученным методом ультразвукового распыления. Данный метод имеет ряд преимуществ по сравнению с обработкой в парах растворителя, полученных при его нагреве, к которым относятся возможность регулирования размера капель, скорости их движения, концентрации аэрозоля за счёт изменения режимов ультразвукового воздействия. В результате экспериментальных исследований установлено, что применение данного способа обработки приводит к повышению качества поверхностей обрабатываемого образца. Снижению высотных параметров шероховатости в направлении, перпендикулярном послойному росту изделия, более чем в десять раз. Механизм изменения микрогеометрии поверхности, следующий: при попадании капель аэрозоля на поверхность, часть материала, образующего выступы, растворяется и в жидком состоянии заполняет впадины; после окончания обработки материал полимеризуется, образуя поверхность с улучшенными характеристиками.
Ключевые слова
Об авторах
Равиль Исламович Нигметзянов
Московский автомобильно-дорожный государственный технический университет (МАДИ)
Email: lefmo@yandex.ru
ORCID iD: 0009-0008-1443-7584
«Технология конструкционных материалов», кандидат технических наук
Вячеслав Михайлович Приходько
Московский автомобильно-дорожный государственный технический университет (МАДИ)
Email: prikhodko@madi.ru
ORCID iD: 0000-0001-8261-0424
SPIN-код: 9548-8428
Scopus Author ID: 56358519600
ResearcherId: U-5179-2018
член-корреспондент Российская академия наук (РАН), профессор, доктор технических наук
Сергей Константинович Сундуков
Московский автомобильно-дорожный государственный технический университет (МАДИ)
Email: sergey-lefmo@yandex.ru
ORCID iD: 0000-0003-4393-4471
«Технология конструкционных материалов», кандидат технических наук
Виктор Александрович Клименко
Национальный исследовательский Томский государственный университет
Email: klimenko@siberia.design
ORCID iD: 0000-0002-4112-9690
Владимир Константинович Кольдюшов
Московский автомобильно-дорожный государственный технический университет (МАДИ)
Автор, ответственный за переписку.
Email: klimenko@siberia.design
Список литературы
Dilberoglu U.M. et al. The role of additive manufacturing in the era of industry 4.0 //Procedia manufacturing. 2017. V. 11. P. 545-554. doi: 10.1016/j.promfg.2017.07.148. Gardan J. Additive manufacturing technologies: state of the art and trends //Additive Manufacturing Handbook. 2017. P. 149-168. doi: 10.1080/00207543.2015.1115909. Конов С.Г., Котобан Д.В., Сундуков С.К., Фатюхин Д.С. Перспективы применения ультразвуковых технологий в аддитивном производстве // Наукоемкие технологии в машиностроении. 2015. № 9 (51). С. 28-34. Gordelier T.J. et al. Optimising the FDM additive manufacturing process to achieve maximum tensile strength: A state-of-the-art review // Rapid Prototyping Journal. 2019. Т. 25. Iss. 6. P. 953-971.doi: 10.1108/RPJ-07-2018-0183. Тимофеева А.Г., Баурова Н.И. Перспективы применения вторичных нетканых материалов в качестве армирующего наполнителя композитов в машиностроении // Все материалы. Энциклопедический справочник. 2023. № 1. С. 29-32. doi: 10.31044/1994-6260-2023-0-1-29-32. Волченкова, А.А., Галкина Е.А.,Баурова Н.И. Оценка влияния условий хранения дисперсных и волокнистых наполнителей на свойства композитов на их основе // Все материалы. Энциклопедический справочник. 2023. № 2. С. 27-31. doi: 10.31044/1994-6260-2023-0-2-27-31. Нигметзянов Р.И., Сундуков С.К., Фатюхин Д.С. [и др.] Пути совершенствования аддитивных технологий с помощью ультразвука // СТИН. 2017. № 7. С. 2-6. Сундуков С. К. Подготовка эпоксидного клея методом ультразвуковой обработки // Клеи. Герметики. Технологии. 2023. № 9. С. 32-40. doi: 10.31044/1813-7008-2023-0-9-32-401. Bram Verhaagen, Thijs Zanderink, David Fernandez Rivas. Ultrasonic cleaning of 3D printed objects and Cleaning Challenge Devices // Applied Acoustics. Vol. 103, Part B. 2016. P. 172-181.doi: 10.1016/j.apacoust.2015.06.010 Александров В.А., Сундуков С.К., Фатюхин Д.С., Филатова А.А. Ультразвуковые способы повышения качества поверхности изделий, полученных методом селективного лазерного плавления порошков коррозионно-стойких сталей // Металловедение и термическая обработка металлов. 2018. № 6 (756). С. 42-47. Slegers S. et al. Surface roughness reduction of additive manufactured products by applying a functional coating using ultrasonic spray coating // Coatings. 2017. V. 7. Iss. 12. P. 208. DOI: doi.org/10.3390/coatings7120208.
Дополнительные файлы



