НАУКОЁМКИЕ ТЕХНОЛОГИИ В МАТЕРИАЛОВЕДЕНИИ: ВЫСОКОТЕМПЕРАТУРНОЕ СКВОЗНОЕ АЗОТИРОВАНИЕ ЖАРОСТОЙКОЙ СТАЛИ

Обложка

Цитировать

Полный текст

Аннотация

Актуальность проводимого исследования обусловлена ужесточением условий работы изделий высокотемпературного применения из листовых жаростойких сплавов, к которым относятся, в частности, аустенитные хромоникелевые стали. При работе стальных деталей под нагрузкой в окислительной атмосфере и агрессивных средах наряду со стойкостью к электрохимической и газовой коррозии от них требуется повышенная прочность, твердость, жаропрочность. Повышение характеристик указанных свойств достигается методами объемного и поверхностного упрочнения, к числу которых относится процесс азотирования. Применение традиционных технологий печного газового азотирования к хромоникелевым сталям сталкивается с проблемами: низкая скорость процесса насыщения азотом, что существенно увеличивает время процесса, и образование нитридов хрома, что негативно сказывается на коррозионной стойкости и жаростойкости. Разработка новых технологий азотирования высоколегированных хромосодержащих сталей ведется в направлении интенсификации процесса насыщения и регулирования фазового состава азотированного слоя для минимизации образования нитридов хрома. В настоящей работе поставлена цель определить рациональные технологические варианты и режимы высокотемпературного газового азотирования аустенитной стали, позволяющие повысить прочностные характеристики при комнатной и повышенных темпера-турах с сохранением ее жаростойкости. Термодинамическое моделирование фазового состава на основе CALPHAD-метода показало, что основными мерами по минимизации выделения нитридов хрома на азотированной поверхности являются увеличение концентрации титана в стали и снижение активности насыщающей газовой атмосферы, что достигается разбавлением азота инертным газом. Экспериментальные исследования проводились на листовых образцах 1,5 мм толщины стали аустенитного класса типа Х18Н10Т со стандартным (0,5%Ti) и повышенным (1%Ti) содержанием титана. Эксперименты проводили на лабораторной установке для высокотемпературного азотирования (900…1200 ℃); в качестве насыщающих сред использовали чистый азот и смеси азота с аргоном. Исследовали также двухступенчатые процессы, состоящие из азотирования в азоте с последующим отжигом в аргоне. Металлографическим анализом установлено, что при одной и той же температуре азотирования количество нитридов хрома снижается в экспериментальной стали с увеличенным содержанием титана, а разбавление азота аргоном снижает температуру выделения нитридов хрома. По исследованию кинетики процесса насыщения определено время сквозного азотирования листового образца при разных режимах насыщения, а также продолжительность деазотирующего отжига, рассчитанная на основании известной толщины зоны нитридов хрома. Установлено, что дисперсионное упрочнение зон внутреннего азотирования нитридами титана приводит к увеличению прочностных характеристик сталей как при комнатной, так и при повышенных температурах по сравнению с характеристиками базовой стали 08Х18Н10Т после типовой термообработки, при этом наибольший эффект упрочнения достигается при сквозном азотировании стали с 1%Ti. Рекомендованы варианты процессов сквозного азотирования 1,5 мм листа экспериментальной стали: tаз=1050 ℃, N2, 16 ч; tаз=1100 ℃, 50%N2 + 50%Ar, 22 ч; tаз=1100 ℃, N2, 5 ч + tотж=1200 ℃, Ar, 9 ч. Временное сопротивление разрыву азотированной стали при комнатной температуре повышается на 45…50 %, а при испытаниях при 800 ℃ – на 40…65% в зависимости от режима процесса. Сквозное азотирование позволяет поднять рабочую температуру сталей на 100…150 ℃ с обеспечением такой же длительной прочности. Жаростойкость при 900 ℃ сохраняется на уровне неазотированной стали после двухступенчатых процессов, обеспечивающих максимальное удаление с поверхности нитридов хрома на стадии отжига.

Об авторах

Лариса Георгиевна Петрова

Московский автомобильно-дорожный государственный технический университет (МАДИ)

Автор, ответственный за переписку.
Email: petrova_madi@mail.ru
ORCID iD: 0000-0002-7248-2454
SPIN-код: 5452-2754
Scopus Author ID: 7102799952
кафедра "Технологии конструкционных материалов", доктор технических наук

Список литературы

  1. Березовская В.В., Березовский А.В. Коррозионностойкие стали и сплавы: учебное пособие. Екатеринбург: Издательство Уральского университета, 2019. 244 с.
  2. Петрова Л.Г. Александров В.А., Зюзин Д.М., Богданов К.В. Способ высокотемпературного азотирования деталей из коррозионностойких хромоникелевых сталей // Патент РФ № 2287608, опубл. 20.11.2006.
  3. Рогачев С.О., Никулин С.А., Хаткевич В.М. Эволюция структуры и механические свойства объемно-азотированной коррозионно-стойкой ферритной стали при отпуске в интервале температур 400-700 °С // Физика металлов и металловедение. - 2017. Т. 118. № 8. С. 824-828. doi: 10.7868/S0015323017080137; EDN: ZCPEEJ
  4. Рогачев С.О., Стомахин А.Я., Никулин,С.А. Структура и механические свойства аустенитных Cr - Ni - Ti сталей после высокотемпературного азотирования // Известия высших учебных заведений. Черная металлургия. 2019. Т. 62. № 5. С. 366-373. doi: 10.17073/0368-0797-2019-5-366-373; EDN: HMUKOR
  5. Bottoli F., Jellesen M.S., Christiansen T.L., et. al. High temperature solution-nitriding and low-temperature nitriding of AISI 316: Effect on pitting potential and crevice corrosion performance // Appl. Surf. Sci. 2018. Vol. 431. P. 24-31.
  6. Иванов Д.И., Кожухов А.А., Уразова Л.Ф. Механизм высокотемпературной коррозии жаростойкой хромоникелевой стали // Известия высших учебных заведений. Черная металлургия. 2016. Т. 59. № 3. С. 180-184. doi: 10.17073/0368-0797-2016-3-180-184; EDN: VQZZNJ
  7. Рогачев С.О., Никулин С.А., Хаткевич В.М. Влияние высокотемпературного азотирования на коррозионную стойкость ферритных хромистых сталей // Физика и химия обработки материалов. 2019. № 2. С. 36-43. doi: 10.30791/0015-3214-2019-2-36-43; EDN: TZQELZ
  8. Петрова Л.Г., Сергеева А.С. Контроль фазового состава аустенитных сталей при поверхностном упрочнении методом высокотемпературного азотирования // Наукоемкие технологии в машиностроении. 2020. № 6 (108). С. 3-11. doi: 10.30987/2223-4608-2020-6-3-11; EDN: PQAFWY
  9. Ахмедзянов М.В., Овсепян С.В., Родин,А.О. Кинетика высокотемпературного азотирования и свойства сплава системы Ni - Co - Cr - W - Ti // Металловедение и термическая обработка металлов. 2022. № 4 (802). С. 45-49. doi: 10.30906/mitom.2022.4.45-49; EDN: EHPQPJ
  10. Ju Q., Zhang Y.-L., Tong J.-T., Ma H.-P. Evolution of microstructure and properties of internal nitride dispersion strengthened alloy before nitriding // Journal of Iron and Steel Research. 2018. Vol. 30 (2). P. 156-161. doi: 10.13228/j.Boyuan.issn1001-0963.20170048; EDN: IBYBVM
  11. Петрова Л.Г., Чудина О.В. Способ высокотемпературного азотирования хромоникелевых сплавов, легированных титаном // Патент РФ № 2148675, опубл. 10.05.2000.
  12. Сергеева А.С., Петрова Л.Г., Коленько, Н.В. Повышение износостойкости хромоникелевых нержавеющих сталей путем высокотемпературного азотирования // Наука и техника в дорожной отрасли: Материалы конференции, Москва, 18 марта 2021 года. - М. - Московский автомобильно-дорожный государственный технический университет (МАДИ). 2021. С. 82-84. EDN: DFVARB
  13. Бибиков П.С., Белашова И.С., Прокофьев М.В. Особенности технологии азотирования высоколегированных коррозионностойких сталей авиационного назначения // Вестник Московского авиационного института. 2021. -Т. 28. №2. С. 206-215. doi: 10.34759/vst-2021-2-206-215; EDN: SVFSHY
  14. Christiansen T. L., Villa M., Tibollo C., Dahl K.V. and Somers M.A.J. High Temperature Solution Nitriding of Stainless Steels; Current Status and Future Trends // HTM Journal of Heat Treatment and Materials. 2020. Vol. 75. No. 2. P. 69-82.
  15. Петрова Л.Г., Белашова И.С. Оценка твердорастворного упрочнения аустенитных сплавов при легировании азотом // Вестник Московского авиационного института. 2022. Т. 29. № 1. С. 245-252. doi: 10.34759/vst-2022-1-245-252; EDN: KHTGRX
  16. Петрова Л.Г., Шапошников Н.Г., Сергеева, А.С. Термодинамическое прогнозирование фазового состава азотированной хромоникелевой стали // Проблемы черной металлургии и материаловедения. 2019. №4. С. 66-74. EDN: CJTBGZ
  17. Петрова Л. Г. Оценка прогнозируемого упрочнения железа при поверхностном легировании металлом в сочетании с азотированием // Технология металлов. 2022. № 8. С. 41-52. doi: 10.31044/1684-2499-2022-0-8-41-52; EDN: QRNGSX

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».