TECHNOLOGICAL CONTROL OF SURFACE OPERATIONAL ROUGHNESS PARAMETERS FOR SLIDING FRICTION PAIRS THROUGH COMBINED ANTIFRICTION SURFACING
- Autores: Nagorkin M.N.1, Fedorov V.P.1, Anatoliy G. S.G.1,2,3, Totay A.V.1
-
Afiliações:
- Bryansk State Technical University
- National Research Nuclear University “MEPhI”
- Bauman Moscow State Technical University
- Edição: Nº 12 (150) (2023)
- Páginas: 37-45
- Seção: Technological support of operational properties of machine parts and their connections
- URL: https://journals.rcsi.science/2223-4608/article/view/350530
- DOI: https://doi.org/10.30987/2223-4608-2023-37-45
- ID: 350530
Citar
Texto integral
Resumo
The article presents study results of the technological control ways for roughness operational parameters generation in tribo-elements of sliding friction pairs through combined antifriction surfacing methods. The possibilities of technological control of the roughness parameters of the parts surfaces were studied for two types of part cutting – based on both: the application of hard wear-resistant nitride-containing coatings on the surfaces of parts and on the application of soft copper-containing work plates on the working surfaces of parts in combination with surface plastic deformation technique. Surface plastic deformation was carried out by diamond burnishing or ball burnishing. As controlling factors in experimental studies, both: the conditions for surfacing of parts and the run-in conditions in sliding friction pairs were viewed. Break-in process of pairs was carried out on a programmable testing unit (friction machine), which allows simulating both: static loads and dynamic loads that change together with the specified parameters in a periodic manner. Models for quantitative ratings of the influence of surfacing factors of parts using anti-friction technologies and their further development in sliding friction pairs on operational roughness parameters generation, which, in turn, have a significant impact on the operational properties of tribo-elements. To assess the degree of technological factors effect of the treatment on the generation of operational roughness of parts, their ranking by the Pareto method was carried out. The degree of consistency of control factors impact on operational roughness parameters generation was assessed using the coefficient of rank concordance. The information presented in the article is necessary for practical application in the field of designing technological methods of combined antifriction surfacing of parts for sliding friction pairs of machines and mechanisms.
Sobre autores
Maksim Nagorkin
Bryansk State Technical University
Email: nagorkin@tu-bryansk.ru
ORCID ID: 0000-0002-4536-7522
Department of Technosphere Safety, docent, doctor of technical sciences
Vladimir Fedorov
Bryansk State Technical University
Email: tm-bgtu@yandex.ru
ORCID ID: 0000-0003-2113-6567
Department of Mechanical Engineering Technology, professor, doctor of technical sciences
Suslov Anatoliy G.
Bryansk State Technical University; National Research Nuclear University “MEPhI”; Bauman Moscow State Technical University
Email: naukatm@yandex.ru
ORCID ID: 0000-0003-2566-2759
Scopus Author ID: 7102825210
Researcher ID: G-1042-2016
professor, doctor of technical sciences
Anatoliy Totay
Bryansk State Technical University
Autor responsável pela correspondência
Email: totai_av@mail.ru
ORCID ID: 0000-0003-4794-9881
Department of Technosphere Safety, professor, doctor of technical sciences
Bibliografia
Инженерия поверхности деталей / А. Г. Суслов, В. Ф. Безъязычный, Ю. В. Панфилов [и др.]; под редакцией А. Г. Суслова. М.: Машиностроение, 2008. 320 с. Технологическое обеспечение и повышение эксплуатационных свойств деталей и их соединений / А.Г. Суслов, В.П. Федоров, О.А. Горленко [и др.]; под общ. ред. А.Г. Суслова. М.: Машиностроение, 2006. 447 с. Горленко О.А., Шохиён А.Н., Щербаков А.Н. Технологические методы продления долговечности цилиндрических поверхностей трения // Наукоёмкие технологии в машиностроении. 2023. № 2 (140) С. 40-48. doi: 10.30987/2223-4608-2023-2-40-48. Моргаленко Т.А. Технология обработки поверхностей трения скольжения, основанная на применении твердых износостойких покрытий с учетом влияния технологической наследственности // Наукоёмкие технологии в машиностроении. 2020. № 12 С. 31-38. doi: 10.30987/2223-4608-2020-12-31-38. Нагоркин М. Н. Параметрическая надёжность технологических систем чистовой и отделочно-упрочняющей обработки поверхностей деталей машин инструментами из сверхтвёрдых синтетических материалов: монография / под ред. А. В. Киричека. М.: Издательский дом «Спектр», 2017. 304 с. Nagorkin M.N., Fyodorov V.P., Kovalyova E.V. Modeling of process of forming quality parameters for surfaces of parts by diamond burnishing taking into account technological heredity. In: IOP Conf. Series: Materials Science and Engineering. 327, 042071 (2018). Nagorkin M.N., Fyodorov V.P., Nagorkina V.V. Simulation modelling of tribotechnologies system and its parametric reliability assessment on tribotechnical parameters of the joints of sliding friction. In: IOP Conf. Series: Materials Science and Engineering. 177, 012079 (2017). Федоров В. П., Суслов А. Г., Нагоркин М. Н. Диагностика технологических систем по надежности обеспечения заданных параметров качества обрабатываемых поверхностей деталей // Наукоёмкие технологии в машиностроении. 2020. № 1 (103). С. 15-24. doi: 10.30987/2223-4608-2020-2020-1-15-24. Аверченков В.И., Федоров В.П., Хейфец М.Л. Основы математического моделирования технических систем. М.: Флинта, 2021. 271 с. Федоров В.П., Нагоркин М.Н., Вайнер Л.Г. Методологические основы диагностики технологических систем металлообработки по параметрической надежности обеспечения заданного качества обрабатываемых поверхностей // Вестник Брянского государственного технического университета. 2021. № 11 (108). С. 49-63. doi: 10.30987/1999-8775-2021-11-36-50. Суслов А.Г., Федоров В.П., Нагоркин М.Н., Пыриков И.Л. Комплексный подход к экспериментальным исследованиям технологических систем металлообработки по обеспечению параметров качества и эксплуатационных свойств поверхностей деталей машин // Наукоемкие технологии в машиностроении. 2018. № 10. С. 3-13. doi: 10.30987/article 5bb4b1f9abbc54.46761484.
Arquivos suplementares


