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Актуальность. Барицентрический метод 
дает возможность решать задачи различного 
уровня сложности (вычислительные задачи, 
задачи на доказательство, задачи практиче-
ского характера и т. д.), что определяет его 
применение в самых разнообразных областях 
науки и техники. На сегодняшний день лишь 
немногие студенты и специалисты в той или 
иной области математики знают о сущности 
данного метода, так как его изучение как в 

школьном курсе математики, так и в курсе 
высшего образования не является обязатель-
ным. Для формирования у читателя представ-
ления о барицентрическом методе (его сути, 
актуальности в решении геометрических за-
дач и востребованности в различных обла-
стях науки и техники) обратимся к его исто-
рическим истокам и приложению. 

Исторический обзор. Барицентрические 
координаты — это способ представления точ-
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ки в плоскости или пространстве через массы 
(коэффициенты), ассоциированные с верши-
нами треугольника или тетраэдра. Развитие 
данного понятия тесно связано с историей 
механики и геометрии. Далее в работе поня-
тия «центр масс», «центр тяжести», «центр 
веса» будут использоваться как синонимы.

В основе барицентрических координат ле-
жит идея центра тяжести, которая появилась 
еще в античности. Центр (вес) тяжести под-
вергся принудительному смещению в иссле-
дованиях Архимеда (287—212 гг. до н. э.), 
который пытался обосновать его расположе-
ние относительно вершин треугольника. Ре-
зультаты данных исследований он изложил в 
своем труде «О равновесии плоских фигур» 
(«О равновесии плоскостей» Т.1, предложе-
ния 13-14 [1]).   Стоит заметить, что понятие 
центра тяжести предполагается известным, и 
в начале книги приводятся постулаты о цен-
трах тяжести  [1]:  

•	 центр веса треугольника лежит на пря-
мой, проведенной из угла к середине стороны 
(Предложение 13, версия 1);

•	 центр веса треугольника лежит на меди-
ане треугольника (Предложение 13, версия 2);

•	 центр веса треугольника является пе-
ресечением медиан треугольника (Предло-
жение 14);

•	 центр веса треугольника пересекает 
медиану в отношении 2:1 (Предложение 14, 
следствие; нет в «Равновесиях плоскостей»).

В самом трактате также даются опреде-
ления центров тяжести треугольника, па-
раллелограмма, трапеции, параболического 
сегмента, трапеции, боковые стороны кото-
рой являются дугами парабол; доказывается, 
что центр тяжести плоского треугольника на-
ходится в точке пересечения его медиан.

Выдвинутая Архимедом концепция “ба-
рицентра” («барос» — в переводе с греческо-
го — вес, тяжесть, а значит «барицентр» — 
центр тяжести) использовалась также и для 
нахождения равновесия тел. Его теория рыча-
га долгое время являлась основой механики. 

«Соизмеримые величины уравновеши-
ваются на длинах, которые будут обратно 
пропорциональны тяжестям. Если величи-
ны будут несоизмеримы, то они точно так 

же уравновесятся на длинах, которые обрат-
но пропорциональны этим величинам» [2,  
с. 22]. Однако данная концепция «барицен-
тра» применительно к координатам сформу-
лирована не была.

Все доказательства у Архимеда основаны 
на уравновешивании тела путем принуди-
тельного смещения центра тяжести. 

Однако понятие центра тяжести и знания 
о нем позволило древним математикам при-
ступать к решению задач, не поддававшихся 
решению иными способами. Менелай Алек-
сандрийский, древнегреческий математик и 
астроном (около 70-100 н. э.), использовал 
свойства центров масс в доказательстве клас-
сической теоремы аффинной геометрии о 
полном четырехстороннике, которая впослед-
ствии получила название теоремы Менелая 
[3, с. 56]. Также нахождение площадей неко-
торых геометрических фигур, до изобретения 
исчисления бесконечно малых величин, было 
сведено к механическому вопросу о центре тя-
жести (Паппус, александрийский математик, 
III–IV вв). Позднее Гульдин (1577–1643 гг.)  
в своих сочинениях описывает способ нахож-
дения объема тел вращения с использованием 
барицентра. 

Стоит также отметить, что свойства бари-
центра использовались и Джованни Чевой 
(1647–1734) для доказательства одноименной 
теоремы, основанного на рассмотрении цен-
тра тяжести системы из трехточечных грузов 
[4, с. 40].

Дальнейшее развитие теория барицентра 
получила в исследованиях Жозефа-Луи Ла-
гранжа (1736–1813). Им была предпринята 
попытка формализации центра масс. Ла-
гранж использовал идеи центра масс в меха-
нике. Он разработал основы анализа движе-
ния тел, где веса точек (массы) играли роль 
барицентрических координат. 

С XVIII в. барицентрические координаты 
начали рассматриваться как инструмент для 
решения задач и доказательства теорем, свя-
занных с треугольниками. Стоит заметить, 
что самого понятия барицентрических коор-
динат еще введено не было.

Так, Морис Карно (1796–1832) в своей 
«Геометрии положения» использовал бари-
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центрические координаты для доказательства 
теоремы о пересечении перпендикуляров, 
восставленных из точек на сторонах и про-
должениях сторон треугольника. Симон Лю-
илье (1750–1840) во время исследования мно-
гогранников применял понятия барицентра 
и барицентрических координат, так появи-
лось понятие точки Люилье, барицентриче-
ские координаты которой пропорциональны 
квадратам площадей граней тетраэдра (точ-
ка Люилье совпадает с центроидом только в 
равногранном тетраэдре).

Геометрическая интерпретация барицен-
трических координат была осуществлена 
Августом Фердинандом Мебиусом, немец-
ким математиком, механиком и астрономом, 
жившем в XIX в.

Он впервые ввел понятие «барицентри-
ческих координат» в своем труде — мему-
аре «Барицентрическое исчисление» (Der 
barycentrische Calcul (1828)) и положил нача-
ло барицентрическому исчислению — разде-
лу аналитической геометрии, в котором гео-
метрические фигуры и их свойства изучаются 
средствами алгебры [5]. 

Август Мебиус продемонстрировал, как 
любая точка треугольника может быть выра-

жена через веса (коэффициенты) относитель-
но его вершин.

В своем исследовании он рассматривал 
особый род треугольных координат именно с 
механической точки зрения. В качестве коор-
динат некоторой точки он рассматривал три 
массы , которые надо поместить 
в вершинах данного треугольника, для того 
чтобы эта точка сделалась центром тяжести 
взятых масс. Решая задачу о принудительном 
смещении барицентра симплекса, Мебиус 
предполагал, что плотность симплекса сме-
щения постоянна. Так и были открыты бари-
центрические координаты (1827 г.). 

Таким образом, важный вклад Мебиуса за-
ключался также и в том, что он связал геоме-
трические представления с алгебраическими 
методами, что открыло новые возможности 
для изучения аффинной и проективной гео-
метрии.

Рассмотрение развития барицентрическо-
го метода позволило выделить характерные 
его признаки, которые используются при ре-
шении различных задач в целом и геометри-
ческих, в частности.

Рассмотрим следующую задачу [6], реша-
емую барицентрическим методом.

Задача 1. На сторонах и BC треугольника  расположены точки  и  соот-
ветственно, причем ,  Прямые  и  пересекаются в 
точке . Найдите отношения 

Математические основы:
•	 Если точке A поставлено в соответствие число  (называемое массой точки), то гово-

рят, что задана материальная точка  (при этом число  не обязательно положительно).
•	 Центром масс материальных точек  называется такая точка , для которой вы-

полняется векторное равенство

Возможна иная запись:  (центр масс M — взвешенное 
среднее материальных точек . 

Правило рычага: в случае двух точек и с массами и их центр масс делит от-
резок в отношении .

•	 Для любой системы материальных точек с ненулевой суммарной массой центр масс су-
ществует и определяется этими точками однозначно.

•	 Теорема о группировке масс. Если часть материальных точек заменить точкой, распо-
ложенной в их центре масс и имеющей ненулевую массу, равную сумме масс этих точек, то 
центр масс всех точек не изменяется.
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Доказательства указанных утверждений можно найти, например, в [4].

Дано: 

Найти: 

 

 

 

 

 
 

Решение 
1. Поместим массу  в вершину  треугольника    
2. Определим массы  и  соответственно для вершин  и  из условий 

,  .  С о гл а с н о  п р а в и л у  р ы ч а г а  и м е е м :  
.

3. Пусть . Тогда . Массы точек  и  соответственно 32 и 15.
4. Найдем необходимые отношения, определив массу точки О:
•	 для отрезка :   , т.е. 
•	 для отрезка :   , т.е. 
Ответ:  
Определение барицентрических координат. В работах различных авторов барицентриче-

ские координаты определяются с точки зрения: 
1) геометрии масс [4];
2) аффинной геометрии [3; 7].  
Напомним вкратце оба этих подхода:
1) В этом подходе барицентрические координаты суть масс, которыми наделяются базис-

ные точки (см. задачу 1). Действительно, для произвольной внутренней точки  треугольника 
 можно подобрать такие положительные числа , для которых  будет 

центром масс получающихся материальных точек . Массы 
не определяются однозначно. Если эти массы умножить на произвольное положительное чис-
ло   (  то центром масс новых мате-
риальных точек  будет та же точка . 

При  сумма масс  будет равна 1. Получаем новые массы 

, сумма которых равна 1, и при этом точка  по-прежнему 
будет центром масс материальных точек вида .  

Таким образом, для любой внутренней точки  треугольника  существуют та-
кие положительные числа , что =1 ( ) и при этом точка  является 
центром масс материальных точек .

 ( )
Числа  , удовлетворяющие условиям ( ) и ( ), называются барицентрическими 

координатами точки  относительно базисного треугольника .	
Если не ограничиваться только положительными массами , а допускать для них 

произвольные вещественные значения, то для точек, лежащих вне треугольника , 
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   (1)

 =

  (2)
Из (1) и (2) следует:  
Пусть . 
Имеем, 
Таким образом, для любой точки  пространства и любой точки  плоскости треуголь-

ника  имеют место равенства:

   ( )
Иными словами, любая произвольная точка  в этой плоскости может быть выражена как 

барицентрическая комбинация точек  т. е. , где ко-
эффициенты  называются барицентрическими координатами точки  относительно точек 

Эти коэффициенты удовлетворяют условию: . 
Существенно, что коэффициенты  не зависят от выбора точки  при заданной точке .  

Предлагаем читателю самому обосновать данное утверждение, рассмотрев произвольную 
точку  пространства, отличную от точки .

Принято также говорить, что точка  — это барицентрическая комбинация точек 
 с коэффициентами   и =1, если для некоторой точки 

 выполняется следующее равенство .
Справедлива следующая теорема 2 (см., например [6]):
Теорема 2. Пусть точки  — точки общего положения в двумерном аффинном 

пространстве. Тогда для любой точки  существует и при том только одно представление ее 
в виде барицентрической комбинации точек .

тоже можно задать барицентрические коор-
динаты. Таким образом, справедлива следу-
ющая теорема 1 [4]:

Теорема 1.  Пусть  — заданный 
треугольник и  – произвольная точка в его 
плоскости. Тогда существуют однозначно 
определенные вещественные числа ,  
удовлетворяющие условиям ( ) и ( ).

Верным является и утверждение, обратное 
данной теореме: для действительных чисел 

 таких, что = 1, в 
плоскости треугольника  существу-
ет однозначно определенная точка , такая 
что  .

2) Барицентрические координаты — это 
способ представления точки в аффинном про-
странстве относительно заданного набора ба-
зисных точек (вершин симплекса, например, 

треугольника в двумерном пространстве или 
тетраэдра в трехмерном). 

Пусть дан треугольник  общего 
вида и точка  (не обязательно внутренняя) в 
его плоскости,  — произвольная точка про-
странства (рис. 1).

 ∙ 

𝐴1 
 

𝐴2 
 

𝐴3 
 

𝑀 
 

∙ 

O 
 

Рис. 1
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Отображение , ставящее в соответствие каждой точке  аффинного пространства упо-
рядоченный набор чисел ,  таких что  = 1, называют барицен-
трической системой координат [6]. Точки  задают базисный симплекс системы 
координат 

Точка аффинного пространства, заданная барицентрическими координатами, определяет-
ся однозначно, т. е. барицентрическая система координат — это биекция. 

Условие  называется нормировкой барицентрических координат точки 
 (обеспечивает аффинную инвариантность) [3].
При решении аффинных задач нормировка координат необязательна.  Можно рассма-

тривать числа  соответственно пропорциональные барицентрическим координатам : 
. Тогда имеем:

, , 
Согласно условиям ( ) вершины базисного треугольника имеют нормиро-

ванные барицентрические координаты: .
Нормированные барицентрические координаты можно задать вершинам равностороннего 

треугольника  со стороной, равной 1 (рис. 2).
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Рис. 2

С середины XX века теория барицентри-
ческих координат расширяется на многомер-
ные пространства (Степанова М. А., Лавров 
С. С. и др.). Данная теория развивается также 
и благодаря своим приложениям.

Приложения барицентрических коорди-
нат к различным областям науки. 

1. Компьютерная графика и 3D-моде- 
лирование (интерполяция и параметризация 
поверхностей; игровая индустрия; моделиро-
вание и визуализация сложных геометриче-
ских объектов) (Богданов А. В., Соколов Д. Д., 
Шаманов А. Н., Смирнов М. Е. и др.);

2. Математическое моделирование и чис-
ленные методы (метод конечных элементов 
(инженерия и физика), моделирование физиче-
ских процессов и природных явлений) (Иванов 
С. В., Бойков И. В., Черных А. Н. и др.);

3. География и картография (анализ топогра-
фических данных, картография, 3D — моде-
лирование рельефа) (Уоррен Д., Леви Б. и др.). 

Барицентрические координаты также 
активно используются и в таких областях, 
как: робототехника и автоматизация, кос-
мические технологии и астрономия, био-
логия и медицина, образовательные техно-
логии и др.

С целью выявления шагов алгоритма по 
применению барицентрических координат 
в решении задач или проведении исследо-
ваний в той или иной области остановимся 
подробнее на их приложениях в различных 
областях.

Пример 1. Популяционная генетика [4].
Барицентрические координаты позволяют 

решать сложные задачи генетики, связанные 
с наследственностью, определением геноти-
па, подсчетом вероятности генетических за-
болеваний и т. д. 

В каждой популяции — совокупности 
особей одного вида — от старших поколе-
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ний к младшим передаются наследственные 
признаки, определяемые генами. На каждый 
ген приходится один элементарный признак, 
например цвет кожи или резус-фактор кро-
ви. Ген может иметь доминантную форму —  
А, или рецессивную форму — а. Каждая 
клетка состоит из одинакового набора ге-
нов, управляющих элементарным призна-
ком: если этот набор генов принимает вид 
АА или Аа, то особь обладает данным при-
знаком в сильной форме, и только если набор 
генов становится вида аа, то признак про-
является в слабой форме. Например, АА —  
это положительный резус-фактор, а аа — от-
рицательный.

Пусть требуется подсчитать вероят-
ность получения некоторого признака X в 
рамках наследственности. 

Определим  как материальную точку и 
рассмотрим ее в барицентрической системе 
координат, где базисными точками являют-
ся  (особи с генотипом  ),  (особи с 
генотипом ) и  (особи с генотипом ).  
Данные базисные точки позволяют предста-
вить популяцию в виде треугольника, т. е. 
двумерного симплекса. Следовательно, поло-
жение материальной точки  в данном базисе 
будет определяться тремя барицентрически-
ми координатами.

Вес каждой базисной точки определя-
ется количеством особей с данным гено-
типом в данной популяции: пусть гено-
тип  имеет  особей, генотип  
особей, генотип  особей. Тогда 

, где	  

,  ,  
  и 

Таким образом, в рамках данной задачи, 
вероятности , ,  — это барицентри-
ческие координаты некоторой точки  вну-
три треугольника, в то время как эта точка 

 и характеризует состояние популяции в 
отношении распределения генов, управля-
ющих рассматриваемыми элементарными 
признаками. 

Пример 2. Химия [4; 8]
Барицентрические координаты в химии 

применимы для решения задач на смеси, 
сплавы и растворы, в которых не происходит 
бурных химических реакций. Каждое веще-
ство принимается за базисную точку, а рас-
твор (смесь, сплав) рассчитывается через кон-
центрацию этих веществ.

Имеется 600 г. раствора йода в спирте, 
причем концентрация йода составляет 18%. 
Требуется получить 10%-ный раствор йода в 
спирте. Определим, сколько следует долить 
чистого спирта.

В качестве материальных точек будем рас-
сматривать точки вида (данный в ус-
ловии задачи раствор) и  (иско-
мый в условии раствор). 

Рассмотрим отрезок  длиной 1 
и сопоставим чистому спирту точку ,  
а чистому йоду — точку . Опреде-
лим данные точки как базисные. Тогда 

 центр масс 
отрезка  (так как вес точки  больше 
веса точки , то  согласно правилу рыча-
га располагается ближе к точке  и, следо-
вательно,  

Итак, требуемый раствор изобразится 
в виде материальной точки ,  
где х  — искомое количество спирта в 
граммах, а  — центр масс двух мате-
риальных точек  и . По усло-
вию точка , т. е. 

По правилу рычага имеем: 
    

  
Ответ: 480 г.
Пример 3. Колориметрия [4; 9; 10]
Основой колориметрии являются методы 

измерения цвета и цветовых различий. Дан-
ные методы используются в оптике при руч-
ном смешивании красок для получения жела-
емого цвета в компьютерной графике для его 
отображения на экране и т. д. 

Существуют три основные системы коди-
рования цвета: RGB (красный, зеленый, си-
ний) — система основных цветов, HSB (от-
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тенок, насыщенность, яркость) — система 
работы с цветом и CMYK (голубой, пурпур-
ный, желтый, черный) — система цветов, до-
полняющих основные цвета до белого. RGB 
преобладает в компьютерной графике, CMYK —  
в полиграфии, а HSB используется преиму-
щественно при создании изображений. Хотя 
все три системы описывают цвет, RGB явля-
ется основой, к которой можно свести осталь-
ные. В приложении барицентрических коор-
динат к колориметрии обратимся к системе 
RGB.

Рассмотрим решение задачи о смешении 
цветов. 

Определим  как материальную точку, 
цвет которой надо получить, и рассмотрим ее 
в барицентрической системе координат, где 
базисными точками являются  (красный 
цвет),  (синий цвет) и  (зеленый цвет). 
Для удобства треугольный градиент выбе-
рем в форме равностороннего треугольника 

 со стороной 1 (цвета расположе-
ны в вершинах). Данный треугольник задает 
двумерный симплекс, следовательно матери-
альная точка  будет задаваться в нем тремя 
координатами.

Вес каждой базисной точки определяется 
площадью некоторой части . 

Обозначим площадь исходного треуголь-
ника  за S. Площадь красного тре- 
угольника —  , синего —  , зеленого — 

 (рис. 3).

 

Рис. 3

Для нахождения барицентрических коор-
динат  точки  внутри данного треугольни-

ка необходимо использовать теорему о связи 
барицентрических координат с площадями, 
согласно которой имеем:

 —  количество красного цвета;

 — количество зеленого цвета;

 — количество синего цвета, вхо-
дящее в искомый.

Таким образом, получаем отношение 
масс красок красного, зеленого и синего 
цветов, используемое, для получения вы-
бранного цвета палитры. Это дает возмож-
ность смешать красную, зеленую и синюю 
краски, массы которых взяты в данном от-
ношении для получения нужного нам цве-
та (рис. 4).

 
 

R G 

Рис. 4

Пример 4. Цветовая интерполяция [11]
Обратную задачу колориметрии решает 

цветовая интерполяция в компьютерной гра-
фике. Задав три точки общего положения и 
обозначив их определенными цветами, соз-
дают градиент, таким образом определяя цвет 
для каждого пикселя картинки. 

Для того чтобы программа могла указать 
определенный цвет, она применяет RGB — 
кодировку в пределах значений от 0 до 255 
(0 соответствует самой низкой интенсив-
ности цвета, а 255 — самой высокой). На-
пример, если поставить 0 в окошках RED, 
GREEN, BLUE, то результатом «смешения» 
будет черный цвет. Если, например, поста-
вить в окошко RED максимальное число, то 
получим чистый красный цвет.
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Некоторые цвета имеют стандартные ко-
ординаты цветности. Например, координа-
ты чистого белого цвета (1, 1, 1), а черно-
го (0, 0, 0). Это позволяет выбирать любые 
исходные цвета для вершин закрашивае-
мой фигуры.

Для написания программы, позволяющей 
задать градиент треугольника, необходимо:

1. Выбрать три точки , ,  общего 
положения, каждой из них присвоить опре-
деленный цвет — атрибут. Эти точки будут 
являться базисными;

2. Определить вес каждой базисной точки: 
практически все программы имеют встроен-
ную декартову систему координат, поэтому 
базисные точки задаются в декартовых коор-
динатах. ,   

3. Для заполнения треугольника градиен-
том необходимо задать барицентрические 
координаты каждому пикселю (пиксель рас-
сматривается как материальная точка).  Най-
ти барицентрические координаты пикселей 
относительно вершин треугольника можно 
по формулам:

 

 

 
Проверить принадлежность текущего пик-

селя треугольнику текущий пик-
сель принадлежит треугольнику, если выпол-
няется условие: .  

Если условие верно, то точка принадле-
жит треугольнику, и значит ей присваивается 
цвет, полученный при интерполяции атрибу-
тов вершин этого треугольника. Если усло-
вие не выполняется, то точка окрашивается 
в цвет фона.

4. Закрашиваем весь треугольник (Рис. 5).

Рис. 5

Интерполировать можно различные 
многоугольники, так как вне зависимости 
от формы и выпуклости, их можно триан-
гулировать. 

Таким образом, для использования бари-
центрического метода в решении задач не-
обходимо:

1. Определить искомую величину как ма-
териальную точку; 

2. Задать базисные точки барицентри-
ческой системы координат своими весами 
(массами), относительно которой будет рас-
сматриваться материальная точка (верши-
ны фигуры, объекты, участвующие в зада-
че и т. д.);

3. Сделать вывод о размерности заданно-
го симплекса и количестве координат мате-
риальной точки;

4. Найти барицентрические координаты 
искомой материальной точки согласно усло-
вию задачи;

5. Решить задачу на языке барицентриче-
ских координат;

6. Записать ответ на языке задачи той или 
иной области.

Барицентрические координаты зароди-
лись как идея центра тяжести в античности, 
получили строгую математическую форма-
лизацию в XIX веке и продолжают активно 
развиваться и применяться в современных 
технологиях и науке.
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