Prospects of using miRNA-378 as a biomarker for cardiovascular diseases: A literature review

Cover Page

Cite item

Full Text

Abstract

Currently, there is an active search for new biomarkers and therapeutic targets to develop effective approaches to risk stratification and secondary prevention of cardiovascular diseases (CVD). Microribonucleic acids (miRNAs) are of particular interest to investigators. MiRNAs are endogenous small noncoding RNAs that regulate the transcription of factors that play a role in the proliferation, differentiation, cell growth, and tissue remodeling processes in CVD. MiRNA-378 is currently being analyzed as a biomarker for CVD. Thus, in this review, we aimed to describe the regulatory role of miRNA-378 and provide strong evidence for its feasibility as a biomarker. Further preclinical and clinical studies are required to identify the potential benefits of miRNA-378 as a biomarker in CVD.

About the authors

Amina M. Alieva

Pirogov Russian National Research Medical University

Author for correspondence.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-code: 2749-6427

MD, Cand. Sci. (Medicine), assistant professor

Russian Federation, 1 Ostrovityanova str., 117997 Moscow

Nyurzhanna Kh. Khadzhieva

Clinic of DNA Genetics “MedEstet”

Email: nurzhanna@yandex.ru
ORCID iD: 0000-0002-5520-281X
SPIN-code: 2520-8520

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Irina E. Baykova

Clinic of DNA Genetics “MedEstet”

Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN-code: 3054-8884

MD, Cand. Sci. (Medicine), assistant professor

Russian Federation, Moscow

Alik M. Rakhaev

Kabardino-Balkarian State University named after H.M. Berbekov

Email: alikrahaev@yandex.ru
ORCID iD: 0000-0001-9601-1174
SPIN-code: 5166-8100

MD, Dr. Sci. (Medicine), professor

Russian Federation, Nalchik

Irina A. Kotikova

Kabardino-Balkarian State University named after H.M. Berbekov

Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN-code: 1423-7300

MD, resident

Russian Federation, Nalchik

Igor G. Nikitin

Kabardino-Balkarian State University named after H.M. Berbekov

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-code: 3595-1990

MD, Dr. Sci. (Medicine), professor

Russian Federation, Nalchik

References

  1. Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microrna and heart failure. Terapija. 2022;(1):60–70. doi: 10.18565/therapy.2022.1.60-70
  2. Li X, Han Y, Meng Y, et al. Small RNA-big impact: exosomal miRNAs in mitochondrial dysfunction in various diseases. RNA Biol. 2024;21(1):1–20. doi: 10.1080/15476286.2023.2293343
  3. Searles CD. MicroRNAs and Cardiovascular Disease Risk. Curr Cardiol Rep. 2024;26(2):51–60. doi: 10.1007/s11886-023-02014-1
  4. Yan J, Zhong X, Zhao Y, et al. Role and mechanism of miRNA in cardiac microvascular endothelial cells in cardiovascular diseases. Front Cardiovasc Med. 2024;11:1356152. doi: 10.3389/fcvm.2024.1356152
  5. Cao Y, Zheng M, Sewani MA, et al. The miR-17-92 cluster in cardiac health and disease. Birth Defects Res. 2024;116(1):e2273. doi: 10.1002/bdr2.2273
  6. Alieva AM, Reznik EV, Teplova NV, et al. MicroRNA-34a in cardiovascular disease: a glimpse into the future. Russian Cardiology Bulletin. 2023;18(1):14–22. doi: 10.17116/Cardiobulletin20231801114
  7. Wang H, Shi J, Wang J, et al. MicroRNA-378: An important player in cardiovascular diseases (Review). Mol Med Rep. 2023;28(3):172. doi: 10.3892/mmr.2023.13059
  8. Alieva AM, Teplova NV, Reznik EV, et al. miRNA-122 as a new player in cardiovascular disease. Rossiiskii meditsinskii zhurnal. 2022;28(4):451–463. doi: 10.17816/medjrf111180
  9. Krist B, Florczyk U, Pietraszek-Gremplewicz K, et al. The Role of miR-378a in Metabolism, Angiogenesis, and Muscle Biology. Int J Endocrinol. 2015;2015:281756. doi: 10.1155/2015/281756
  10. Kuang Z, Wu J, Tan Y, et al. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules. 2023;13(3):568. doi: 10.3390/biom13030568
  11. Li Y, Jiang J, Liu W, et al. microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proc Natl Acad Sci U S A. 2018;115(46):E10849–E10858. doi: 10.1073/pnas.1803377115
  12. Camps C, Saini HK, Mole DR, et al. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer. 2014;13:28. doi: 10.1186/1476-4598-13-28
  13. Zhang J, Ma J, Long K, et al. Overexpression of exosomal cardioprotective miRNAs mitigates hypoxia-induced H9c2 cells apoptosis. Int J Mol Sci. 2017;18(4):711. doi: 10.3390/ijms18040711
  14. Xing Y, Hou J, Guo T, et al. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther. 2014;5(6):130. doi: 10.1186/scrt520
  15. Zhang H, Hao J, Sun X, et al. Circulating pro-angiogenic micro-ribonucleic acid in patients with coronary heart disease. Interact Cardiovasc Thorac Surg. 2018;27(3):336–342. doi: 10.1093/icvts/ivy058
  16. Templin C, Volkmann J, Emmert MY, et al. Increased proangiogenic activity of mobilized CD34+ progenitor cells of patients with acute ST-segment-elevation myocardial infarction: Role of differential microRNA-378 expression. Arterioscler Thromb Vasc Biol. 2017;37(2):341–349. doi: 10.1161/ATVBAHA.116.308695
  17. Chong H, Wei Z, Na M, et al. The PGC-1α/NRF1/miR-378a axis protects vascular smooth muscle cells from FFA-induced proliferation, migration and inflammation in atherosclerosis. Atherosclerosis. 2020;297:136–145. doi: 10.1016/j.atherosclerosis.2020.02.001
  18. Chen W, Li X, Wang J, et al. miR-378a modulates macrophage phagocytosis and differentiation through targeting CD47-SIRPα axis in atherosclerosis. Scand J Immunol. 2019;90(1):e12766. doi: 10.1111/sji.12766
  19. Yuan W, Liang X, Liu Y, et al. Mechanism of miR-378a-3p enriched in M2 macrophage-derived extracellular vesicles in cardiomyocyte pyroptosis after MI. Hypertens Res. 2022;45(4):650–664. doi: 10.1038/s41440-022-00851-1
  20. Zhou R, Jia Y, Wang Y, et al. Elevating miR-378 strengthens the isoflurane-mediated effects on myocardial ischemia-reperfusion injury in mice via suppression of MAPK1. Am J Transl Res. 2021;13(4):2350–2364.
  21. Yan T, Li X, Nian T, et al. Salidroside inhibits ischemia/reperfusion-induced myocardial apoptosis by targeting mir-378a-3p via the IGF1R/PI3K/AKT signaling pathway. Transplant Proc. 2022;54(7):1970–1983. doi: 10.1016/j.transproceed.2022.05.017
  22. Ganesan J, Ramanujam D, Sassi Y, et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation. 2013;127(21):2097–2106. doi: 10.1161/CIRCULATIONAHA.112.000882
  23. Chen YH, Zhong LF, Hong X, et al. Integrated Analysis of circRNA-miRNA-mRNA ceRNA Network in Cardiac Hypertrophy. Front Genet. 2022;13:781676. doi: 10.3389/fgene.2022.781676
  24. Sun F, Zhuang Y, Zhu H, et al. LncRNA PCFL promotes cardiac fibrosis via miR-378/GRB2 pathway following myocardial infarction. J Mol Cell Cardiol. 2019;133:188–198. doi: 10.1016/j.yjmcc.2019.06.011
  25. Wu L, Gao B, Shen M, et al. lncRNA LENGA sponges miR-378 to promote myocardial fibrosis in atrial fibrillation. Open Med (Wars). 2023;18(1):20230831. doi: 10.1515/med-2023-0831
  26. Florczyk-Soluch U, Polak K, Sabo R, et al. Compromised diabetic heart function is not affected by miR-378a upregulation upon hyperglycemia. Pharmacol Rep. 2023;75(6):1556–1570. doi: 10.1007/s43440-023-00535-8
  27. Li X. lncRNA MALAT1 promotes diabetic retinopathy by upregulating PDE6G via miR-378a-3p. Arch Physiol Biochem. 2021;21:1–9. doi: 10.1080/13813455.2021.1985144
  28. Froldi G. View on metformin: Antidiabetic and pleiotropic effects, pharmacokinetics, side effects, and sex-related differences. Pharmaceuticals (Basel). 2024;17(4):478. doi: 10.3390/ph17040478
  29. Khokhar M, Roy D, Bajpai NK, et al. Metformin mediates microRNA-21 regulated circulating matrix metalloproteinase-9 in diabetic nephropathy: an in-silico and clinical study. Arch Physiol Biochem. 2023;129(6):1200–1210. doi: 10.1080/13813455.2021.1922457
  30. Machado IF, Teodoro JS, Castela AC, et al. miR-378a-3p participates in metformin's mechanism of action on C2C12 cells under hyperglycemia. Int J Mol Sci. 2021;22(2):541. doi: 10.3390/ijms22020541
  31. Chaulin AM. The essential strategies to mitigate cardiotoxicity caused by Doxorubicin. Life (Basel). 2023;13(11):2148. doi: 10.3390/life13112148
  32. Mattioli R, Ilari A, Colotti B, et al. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med. 2023;93:101205. doi: 10.1016/j.mam.2023.101205
  33. Wang Y, Zhang Q, Wei C, et al. MiR-378 modulates energy imbalance and apoptosis of mitochondria induced by doxorubicin. Am J Transl Res. 2018;10(11):3600–3609.
  34. Wang Y, Cui X, Wang Y, et al. Protective effect of miR378* on doxorubicin-induced cardiomyocyte injury via calumenin. J Cell Physiol. 2018;233(10):6344–6351. doi: 10.1002/jcp.26615
  35. Zhang H, Hao J, Sun X, et al. Circulating pro-angiogenic micro-ribonucleic acid in patients with coronary heart disease. Interact Cardiovasc Thorac Surg. 2018;27(3):336–342. doi: 10.1093/icvts/ivy058
  36. Li H, Gao F, Wang X, et al. Circulating microRNA-378 levels serve as a novel biomarker for assessing the severity of coronary stenosis in patients with coronary artery disease. Biosci Rep. 2019;39(5):BSR20182016. doi: 10.1042/BSR20182016
  37. Shen J, Chang C, Ma J, et al. Potential of circulating proangiogenic microRNAs for predicting major adverse cardiac and cerebrovascular events in unprotected left main coronary artery disease patients who underwent coronary artery bypass grafting. Cardiology. 2021;146(3):400–408. doi: 10.1159/000509275
  38. Dai R, Liu Y, Zhou Y, et al. Potential of circulating pro-angiogenic microRNA expressions as biomarkers for rapid angiographic stenotic progression and restenosis risks in coronary artery disease patients underwent percutaneous coronary intervention. J Clin Lab Anal. 2020;34(1):e23013. doi: 10.1002/jcla.23013
  39. Chen Z, Li C, Xu Y, et al. Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PLoS One. 2014;9(8):e105702. doi: 10.1371/journal.pone.0105702
  40. Begrambekova YuL, Karanadze NA, Plisyuk AG, et al. Comprehensive physical rehabilitation of patients with heart failure: impact on clinical and functional status and analysis of problems related to the enrollment. Russian Journal of Cardiology. 2022;27(2):4814. doi: 10.15829/1560-4071-2022-4814
  41. Pala M. Exercise and microrna. Georgian Med News. 2023;(345):146–153.
  42. Xu T, Zhou Q, Che L, et al. Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients. Oncotarget. 2016;7(11):12414–12425. doi: 10.18632/oncotarget.6966

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Synthesis and processing of miRNA (Kuang Z, Wu J, Tan Y, et al. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules. 2023;13(3):568. doi: 10.3390/biom13030568. This article can be used under the Creative Commons Attribution (CC BY) (https://creativecommons.org/licenses/by/4.0/)).

Download (262KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».