手术中的人工智能系统:能力、局限和前景。 文献综述

封面

如何引用文章

全文:

详细

如今,人工智能系统越来越多地应用于医学的各个领域。通过对eLibrary、PubMed、Medline、WoS、 Nature、Springer、Wiley J Database中1985-2023年间的278篇出版物进行的分析,选出了99篇文章。这些文章介绍人工智能方法和技术在儿科手术和重症监护中应用的主要方法和现状。本文涉及医用人工智能系统的各种各样方面。这些系统主要是计算机医疗决策支持系统或外科手术干预过程中的外科医生助手。可以通过计算机分析三维成像、计算机断层扫描和磁共振成像的三维解剖建模来规划手术。有了足够精确的三维模型以及器官和病理过程的可视化方法,就可以开发出一系列用于术前规划和术中支持手术干预的技术和软件工具。计算机(技术)视觉允许对医学图像进行高质量的分析,在多模态三维图像中及在视觉控制下的手术过程中对其进行解读(以用于计算机诊断)和,包括增强现实方法。机器人手术涉及机械手(包括遥控机械手)和智能综合体。这些综合体参与手术,并自主执行“第二辅助外科医生”的某些操作。重症监护领域的人工智能技术正在考虑将床边监护仪的数据和其他病人信息结合起来,以识别危急情况并控制肺通气支持。与此同时, 人工智能在外科手术中的应用还受到一些因素的制约。这些因素包括:组合所需的初始数据的性质和标准化、对非典型病例的考虑、所用样本存在偏差的风险以及机器学习模型决策过程的透明度。人工智能系统的开发和应用前景取决于机器学习模型中提出的决策可解释性,以及向所创建系统的全面验证。

作者简介

Boris A. Kobrinskii

Federal Research Center «Computer Sciens and Control» Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kba_05@mail.ru
ORCID iD: 0000-0002-3459-8851
SPIN 代码: 7075-7784

PhD, Dr. Sci. (Med.), Professor, Honored Scientist of the Russian Federation; Head of the Department of Intelligent Decision Support System; Chairman of the Scientific Council of the Russian Association of Artificial Intelligence

俄罗斯联邦, Moscow

参考

  1. Gasparyan SA, Pashkina ES. Stranitsy istorii informatizatsii zdravookhraneniya Rossii. Moscow, 2002. 304 p. (In Russ.)
  2. Nazarenko GI, Osipov GS. Meditsinskie informatsionnye sistemy i iskusstvennyi intellekt. Moscow: Meditsina XXI, 2003. 234 p. (In Russ.)
  3. Zhai H, Brady P, Li Q, et al. Developing and evaluating a machine learning based algorithm to predict the need of pediatric intensive care unit transfer for newly hospitalized children. Resuscitation. 2014;85(8):1065–1071. doi: 10.1016/j.resuscitation.2014.04.009
  4. Rusin CG, Acosta SI, Shekerdemian LS, et al. Prediction of imminent, severe deterioration of children withparallel circulations using real-time processing of physiologic data. J Thorac Cardiovasc Surg. 2016;152(1):171–177. doi: 10.1016/j.jtcvs.2016.03.083
  5. Kwon J-M, Jeon K-H, Lee M, et al. Deep learning algorithm to predict need for critical care in pediatric emergency departments. Pediatr Emerg Care. 2021;37(12):e988–e994. doi: 10.1097/PEC.0000000000001858
  6. Park SJ, Cho K-J, Kwon O, et al. Development and validation of a deep-learning-based pediatric early warning system: a single-center study. Biomed J. 2022;45(1):155–168. doi: 10.1016/j.bj.2021.01.003
  7. Pospelov GS. Iskusstvennyi intellekt — osnova novoi informatsionnoi tekhnologii. Moscow: Nauka, 1988. 288 p. (In Russ.)
  8. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–1930. doi: 10.1161/CIRCULATIONAHA.115.001593
  9. Eckhardt CM, Madjarova SJ, Williams RJ, et al. Unsupervised machine learning methods and emerging applications in healthcare. Knee Surg Sports Traumatol Arthrosc. 2023;31:376–381. doi: 10.1007/s00167-022-07233-7
  10. Shah N, Arshad A, Mazer MB, et al. The use of machine learning and artificial intelligence within pediatric critical care. Pediatr Res. 2023;93(2):405–412. doi: 10.1038/s41390-022-02380-6
  11. Hopewell S, Loudon K, Clarke MJ, et al. Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst Rev. 2009;1:MR000006. doi: 10.1002/14651858.MR000006.pub3
  12. Jüni P, Altman DG, Egger M. Systematic reviews in health care: assessing the quality of controlled clinical trials. BMJ. 2001;323(7303):42–46. doi: 10.1136/bmj.323.7303.42
  13. de Simone B, Chouillard E, Gumbs AA, et al. Artificial intelligence in surgery: the emergency surgeon’s perspective (the ARIES project). Discov Health Systems. 2022;1(1):9. doi: 10.1007/s44250-022-00014-6
  14. Joskowicz L. Computer-aided surgery meets predictive, preventive, and personalized medicine. EPMA J. 2017;8(1):1–4. doi: 10.1007/s13167-017-0084-8
  15. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70–76. doi: 10.1097/SLA.0000000000002693
  16. Dragun IA, Ustinov GG, Zatsepin PM. Avtomatizirovannaya sistema kolichestvennoi otsenki operatsionnogo riska. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2007;310(1):217–221. (In Russ.)
  17. Bertsimas D, Dunn J, Velmahos GC, Kaafarani HMA. Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive OpTimal trees in emergency surgery risk (POTTER) calculator. Ann Surg. 2018;268(4):574–583. doi: 10.1097/SLA.0000000000002956
  18. Maurer LR, Bertsimas D, Bouardi HT, et al. Trauma outcome predictor: an artificial intelligence interactive smartphone tool to predict outcomes in trauma patients. J Trauma Acute Care Surg. 2021;91(1):93–99. doi: 10.1097/TA.0000000000003158
  19. Thorsen-Meyer H-C, Nielsen AB, Nielsen AP, et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Lancet Digit Health. 2020;2(4):e179–e191. doi: 10.1016/S2589-7500(20)30018-2
  20. Mountney P, Yang G-Z. Soft tissue tracking for minimally invasive surgery: learning local deformation online. Metaxas D, Axel L, Fichtinger G, Székely G, editors. Medical image computing and computer-assisted intervention – MICCAI 2008. MICCAI 2008. Lecture notes in computer science. Vol 5242. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-540-85990-1_44.
  21. Vitiello V, Lee S-L, Cundy TP, Yang G-Z. Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng. 2013;6:111–126. doi: 10.1109/RBME.2012.2236311
  22. Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392(10162):2388–2396. doi: 10.1016/S0140-6736(18)31645-3
  23. Daley M, Cameron S, Ganesan SL, et al. Pediatric severe traumatic brain injury mortality prediction determined with machine learning-based modeling. Injury. 2022;53(3):992–998. doi: 10.1016/j.injury.2022.01.008
  24. Kayhanian S, Young AMH, Mangla C, et al. Modelling outcomes after paediatric brain injury with admission laboratory values: a machine-learning approach. Pediatr Res. 2019;86(5):641–645. doi: 10.1038/s41390-019-0510-9
  25. Tunthanathip T, Oearsakul T. Application of machine learning to predict the outcome of pediatric traumatic brain injury. Chin J Traumatol. 2021;24(6):350–355. doi: 10.1016/j.cjtee.2021.06.003
  26. Meyer A, Zverinski D, Pfahringer B, et al. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med. 2018;6(12):905–914. doi: 10.1016/S2213-2600(18)30300-X
  27. Esteva H, Nunez TG, Rodriguez RO. Neural networks and artificial intelligence in thoracic surgery. Thorac Surg Clin. 2007;17(3):359–367. doi: 10.1016/j.thorsurg.2007.07.012
  28. Mayer-Shönberger V, Ingellson E. Big data and medicine: a big deal? J Intern Med. 2018;283(5):418–429. doi: 10.1111/joim.12721
  29. Wong A, Otles E, Donnelly JP, et al. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern Med. 2021;181(8):1065–1070. doi: 10.1001/jamainternmed.2021.2626
  30. Hwang AB, Schuepfer G, Pietrini M, Boes S. External validation of EPIC’s risk of unplanned readmission model, the LACE+ index and SQLape as predictors of unplanned hospital readmissions: a monocentric, retrospective, diagnostic cohort study in Switzerland. PLoS One. 2021;16(11):e0258338. doi: 10.1371/journal.pone.0258338
  31. Shchadenko SV, Gorbachyova AS, Arslanova AR, Tolmachyov IV. 3D visualization for surgical modeling and surgical planning. Bulletin of Siberian Medicine. 2014;13(4):165–171. (In Russ.)
  32. Arhipov IV, Mikhaylov EM, Dolotova DD, et al. Evaluation of accuracy of medical optical navigation system “Neuroplan” for modeling of neurosurgical interventions. Russian journal of neurosurgery. 2018;20(4):104–113. (In Russ.) doi: 10.17650/1683-3295-2018-20-4-104-113
  33. Enchev Y. Neuronavigation: geneology, reality, and prospects. Neurosurg Focus. 2009;27(3):e11. doi: 10.3171/2009.6.FOCUS09109
  34. Monteiro M, Newcombe VFJ, Mathieu F, et al. Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study. Lancet Digit Health. 2020;2(6):E314–E322. doi: 10.1016/S2589-7500(20)30085-6
  35. Dreizin D, Zhou Y, Fu S, et al. A multiscale deep learning method for quantitative visualization of traumatic hemoperitoneum at CT: assessment of feasibility and comparison with subjective categorical estimation. Radiol Artif Intell. 2020;2(6):e190220. doi: 10.1148/ryai.2020190220
  36. Wang X, Peng Y, Lu L, et al. ChestX-Ray8: Hospital-Scale chest X-Ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA. 2017. P. 3462–3471. doi: 10.1109/CVPR.2017.369
  37. Oakden-Rayner L. Exploring the ChestXray14 Dataset: Problems. Medical AI researcher. Radiologist Blog [cited 2023 Jun 21]. Available at: https://laurenoakdenrayner.com/2017/12/18/the-chestxray14-dataset-problems/
  38. Billinghurst M, Savage J, Oppenheimer P, Edmond C. The expert surgical assistant. An intelligent virtual environment with multimodal input. Stud Health Technol Inform. 1996;29:590–607.
  39. Savage J, Rosenblueth DA, Matamoros M, et al. Semantic reasoning in service robots using expert systems. Robotics Auton Syst. 2019;114:77–92. doi: 10.1016/j.robot.2019.01.007
  40. Mascagni P, Padoy N. OR black box and surgical control tower: recording and streaming data and analytics to improve surgical care. J Visc Surg. 2021;158(3S):18–25. doi: 10.1016/j.jviscsurg.2021.01.004
  41. Kenngott HG, Wagner M, Nickel F, et al. Computer-assisted abdominal surgery: new technologies. Langenbecks Arch Surg. 2015;400(3):273–281. doi: 10.1007/s00423-015-1289-8
  42. Mascagni P, Alapatt D, Urade T, et al. A computer vision platform to automatically locate critical events in surgical videos: documenting safety in laparoscopic cholecystectomy. Ann Surg. 2021;274(1):e93–e95. doi: 10.1097/SLA.0000000000004736
  43. Liu R, An J, Wang Z, et al. Artificial intelligence in laparoscopic cholecystectomy: does computer vision outperform human vision? Art Int Surg. 2022;2(2):80–92. doi: 10.20517/ais.2022.04
  44. Colleoni E, Moccia S, Du X, et al. Deep learning based robotic tool detection and articulation estimation with spatiotemporal layers. IEEE Robot Autom Lett. 2019;4(3):2714–2721. doi: 10.1109/LRA.2019.2917163
  45. Chadebecq F, Vasconcelos F, Mazomenos E, Stoyanov D. Computer vision in the surgical operating room. Visc Med. 2020;36(6):456–462. doi: 10.1159/000511934
  46. Ito K, Sugimoto M, Tsunoyama T, et al. A trauma patient care simulation using extended reality technology in the hybrid emergency room system. J Trauma Acute Care Surg. 2021;90(5):e108–e112. doi: 10.1097/TA.0000000000003086
  47. Luo H, Hu Q, Jia F. Details preserved unsupervised depth estimation by fusing traditional stereo knowledge from laparoscopic image. Healthcare Technol Lett. 2019;6(6):154–158. doi: 10.1049/htl.2019.0063
  48. Chen JH, Li Y, Gong JP, Yakun W. Application of da Vinci surgical robotic system in hepatobiliary surgery. Int J Surg Med. 2017;4(1):22–27. doi: 10.5455/ijsm.da-Vinci-surgical-robotic-system-in-hepatobiliary-surgery
  49. Nishikawa A, Hosoi T, Koara K, at el. Face MOUSe: A novel human-machine interface for controlling the position of a laparoscope. IEEE Transact Robotics Automat. 2003;19(5):825–841. doi: 10.1109/TRA.2003.81709
  50. Saeidi H, Opfermann JD, Kam M, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci Robot. 2022;7(62):eabj2908. doi: 10.1126/scirobotics.abj2908
  51. Kozlov YA, Mihan DZh, Novozhilov VA, Baradieva PZ. Robot-assisted surgery in children — state of the art and perspectives of the development. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2015;5(3):63–68. (In Russ.) doi: 10.17816/psaic192
  52. Mosoyan MS, Fedorov DA, Osipov IB, et al. Robot-assisted bladder diverticulectomy in a 9-year-old boy. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2023;13(1):53–61. (In Russ.) doi: 10.17816/psaic1305
  53. Pelizzo G, Nakib G, Romano P, et al. Five millimetre-instruments in paediatric robotic surgery: Advantages and shortcomings. Minima Invasiv Ther Allied Technol. 2014;24(3):1–6. doi: 10.3109/13645706.2014.975135
  54. Matson A, Sinha CK, Haddad M. Robotic pediatric surgery. Sinha CK, Davenport M, editors. Handbook of pediatric surgery. Springer, Cham, 2022. P. 565–575. doi: 10.1007/978-3-030-84467-7_68
  55. Van Mulken TJM, Schols RM, Scharmga AMJ, et al. First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: a randomized pilot trial. Nat Commun. 2020;11(1):757. doi: 10.1038/s41467-019-14188-w
  56. Gumbs AA, Alexander F, Karcz K, et al. White paper: definitions of artificial intelligence and autonomous actions in clinical surgery. Art Int Surg. 2022;2(2):93–100. doi: 10.20517/ais.2022.10
  57. Gumbs AA, Frigerio I, Spolverato G, et al. Artificial intelligence surgery: how do we get to autonomous actions in surgery? Sensors. 2021;21(16):5526. doi: 10.3390/s21165526
  58. Wesdorp NJ, Hellingman T, Jansma EP, et al. Advanced analytics and artificial intelligence in gastrointestinal cancer: a systematic review of radiomics predicting response to treatment. Eur J Nucl Med Mol Imaging. 2021;48:1785–1794. doi: 10.1007/s00259-020-05142-w
  59. Hanson CW III, Marshall BE. Artificial intelligence applications in the intensive care unit. Crit Care Med. 2001;29(2):427–435. doi: 10.1097/00003246-200102000-00038
  60. Kobrinskii BA, Taperova LN. Proekt meditsinskoi intellektual’noi sistemy real’nogo vremeni dlya reanimatsii. Yazykin IM, Rybina GV, Sinitsyn SV, editors. Sbornik nauchnykh trudov: “Nauchnaya sessiya MIFI-2007”. Vol. 3. Moscow, 2007. P. 32–34. (In Russ.)
  61. Kobrinskiy BA. Retrospective analysis of medical expert systems. Novosti iskusstvennogo intellekta. 2005;(2):6–17. (In Russ.)
  62. Gazizova DSh, Lishchuk VA, Lobacheva GV, et al. Primenenie matematicheskikh modelei i metodov dlya lecheniya ostroi serdechnoi nedostatochnosti. Lishchuk VA, Gazizova DSh, editors. Matematicheskaya kardiologiya. Teoriya, klinicheskie rezul’taty, rekomendatsii, perspektivy. Moscow: OOO «Print PRO», 2015. P. 145–146. (In Russ.)
  63. Shvyrev SL, Zarubina TV. Informatsionnye tekhnologii v intensivnoi terapii. Moscow: Izdatel’skii dom “Menedzher zdravookhraneniya”, 2016. 90 p. (In Russ.)
  64. Vincent J-L. The continuum of critical care. Crit Care. 2019;23(S1):122. doi: 10.1186/s13054-019-2393-x
  65. Chang H, Yu JY, Yoon S, Kim T, Cha WC. Machine learning-based suggestion for critical interventions in the management of potentially severe conditioned patients in emergency department triage. Sci Rep. 2022;12:10537. doi: 10.1038/s41598-022-14422-4
  66. Chen L, Ogundele O, Clermont G, et al. Dynamic and personalized risk forecast in step-down units. Implications for monitoring paradigms. Ann Am Thorac Soc. 2017;14(3):384–391. doi: 10.1513/AnnalsATS.201611-905OC
  67. Yoon JH, Mu L, Chen L, et al. Predicting tachycardia as a surrogate for instability in the intensive care unit. J Clin Monit Comput. 2019;33(6):973–985. doi: 10.1007/s10877-019-00277-0
  68. Wijnberge M, Geerts BF, Hol L, et al. Effect of a machine learning-derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial. JAMA. 2020;323(11):1052–1060. doi: 10.1001/jama.2020.0592
  69. Yoon JH, Jeanselme V, Dubrawski A, et al. Prediction of hypotension events with physiologic vital sign signatures in the intensive care unit. Crit Care. 2020;24:661. doi: 10.1186/s13054-020-03379-3
  70. Gutierrez G. Artificial Intelligence in the Intensive Care Unit. Crit Care. 2020;24:101. doi: 10.1186/s13054-020-2785-y
  71. Banerjee I, Sofela M, Yang J, et al. Development and performance of the pulmonary embolism result forecast model (PERFORM) for computed tomography clinical decision support. JAMA Netw Open. 2019;2(8):e198719. doi: 10.1001/jamanetworkopen.2019.8719
  72. Zeiberg D, Prahlad T, Nallamothu BK, et al. Machine learning for patient risk stratification for acute respiratory distress syndrome. PLoS One. 2019;14(3):e0214465. doi: 10.1371/journal.pone.0214465
  73. Flechet M, Falini S, Bonetti C, et al. Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor. Crit Care. 2019;23:282. doi: 10.1186/s13054-019-2563-x
  74. Tran NK, Sen S, Palmieri TL, et al. Artificial intelligence and machine learning for predicting acute kidney injury in severely burned patients: a proof of concept. Burns. 2019;45(6):1350–1358. doi: 10.1016/j.burns.2019.03.021
  75. Davoudi A, Malhotra KR, Shickel B, et al. Intelligent ICU for autonomous patient monitoring using pervasive sensing and deep learning. Sci Rep. 2019;9(1):8020. doi: 10.1038/s41598-019-44004-w
  76. Ma P, Liu J, Shen F, et al. Individualized resuscitation strategy for septic shock formalized by finite mixture modeling and dynamic treatment regimen. Crit Care. 2021;25:243. doi: 10.1186/s13054-021-03682-7
  77. Demšar J, Zupan B. Hands-on training about overfitting. PLoS Comput Biol. 2021;17:1008671. doi: 10.1371/journal.pcbi.1008671
  78. Hravnak M, Pellathy T, Chen L, et al. A call to alarms: current state and future directions in the battle against alarm fatigue. J Electrocardiol. 2018;51(6S):44–48. doi: 10.1016/j.jelectrocard.2018.07.024
  79. Morris AH. Human cognitive limitations. Broad, consistent, clinical application of physiological principles will require decision support. Ann Am Thorac Soc. 2018;15(S1):53–56. doi: 10.1513/AnnalsATS.201706-449KV
  80. Parreco J, Hidalgo A, Parks JJ, et al. Using artificial intelligence to predict prolonged mechanical ventilation and tracheostomy placement. J Surg Res. 2018;228:179–187. doi: 10.1016/j.jss.2018.03.028
  81. Hsieh M-H, Hsieh M-J, Chen C-M, et al. An artificial neural network model for predicting successful extubation in intensive care units. J Clin Med. 2018;7(9):240. doi: 10.3390/jcm7090240
  82. Thille AW, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515–1522. doi: 10.1007/s00134-006-0301-8
  83. Chen C-W, Lin W-C, Hsu C-H, et al. Detecting ineffective triggering in the expiratory phase in mechanically ventilated patients based on airway flow and pressure deflection: feasibility of using a computer algorithm. Crit Care Med. 2008;36(2):455–461. doi: 10.1097/01.CCM.0000299734.34469.D9
  84. Blanch L, Sales B, Montanya J, et al. Validation of the better care system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensive Care Med. 2012;38(5):772–780. doi: 10.1007/s00134-012-2493-4
  85. Marchuk Y, Magrans R, Sales B, et al. Predicting patient-ventilator asynchronies with hidden Markov models. Sci Rep. 2018;8:17614. doi: 10.1038/s41598-018-36011-0
  86. Yoon JH, Pinsky MR, Clermont G. Artificial intelligence in critical care medicine. Crit Care. 2022;26(1):75. doi: 10.1186/s13054-022-03915-3
  87. Natarajan P. Best practices: Separating myth from reality. Natarajan P, Frenzel JC, Smaltz DH, editors. Demystifying big data and machine learning for healthcare. 1st edition. CRC Press, 2023. P. 56–68. doi: 10.1201/9781315389325
  88. Petersen E, Holm S, Ganz M, Feragen A. The path toward equal performance in medical machine learning. Patterns. 2023;4(7):100790. doi: 10.1016/j.patter.2023.100790
  89. Litvin A, Korenev S, Rumovskaya S, et al. WSES project on decision support systems based on artificial neural networks in emergency surgery. World J Emerg Surg. 2021;16(1):50. doi: 10.1186/s13017-021-00394-9
  90. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: Seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–1931. doi: 10.1093/eurheartj/ehu207
  91. Leisman DE, Harhay MO, Lederer DJ, et al. Development and reporting of prediction models: guidance for authors from editors of Respiratory, Sleep, and Critical Care journals. Crit Care Med. 2020;48(5):623–633. doi: 10.1097/CCM.0000000000004246
  92. Duran JM, Jongsma KR. Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI. J Med Ethics. 2021;47:329–335. doi: 10.1136/medethics-2020-106820
  93. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy. 2020;23(1):18. doi: 10.3390/e23010018
  94. Finn VK, Shesternikova OP. Ehvristika obnaruzheniya ehmpiricheskikh zakonomernostei posredstvom DSM-rassuzhdenii. Nauchno-tekhnicheskaya informatsiya. Seriya 2: Informatsionnye protsessy i sistemy. 2018;(9):7–42. (In Russ.)
  95. Gavrilov AV. Gibridnye intellektual’nye sistemy: Monografiya. Novosibirsk: Izd-vo NGTU, 2002. (In Russ.)
  96. Ignatyev VV. Adaptive hybrid intellectual control systems. Izvestiya SFEDU. Engineering sciences. 2010;(12):89–94. (In Russ.)
  97. Kobrinskii BA, Dolotova DD, Donitova VV, Gavrilov AV. Radiological images in the construction of hybrid intelligent system. Medical doctor and IT. 2020;(4):43–50. (In Russ.) doi: 10.37690/1811-0193-2020-4-43-50
  98. Kitaguchi D, Takeshita N, Hasegawa H, Ito M. Artificial intelligence-based computer vision in surgery: Recent advances and future perspectives. Ann Gastroenterol Surg. 2022;6(1):29–36. doi: 10.1002/ags3.12513
  99. Camarillo DB, Krummel TM, Salisbury JK. Robotic technology in surgery: past, present, and future. Am J Surg. 2018;188(4S1):2–15. doi: 10.1016/j.amjsurg.2004.08.025
##common.cookie##