Strategy for the prevention of bacterial complications with inhaled nitrogen oxide in newborns

封面

如何引用文章

全文:

详细

BACKGROUND: The nitrogen oxide molecule (NO) is a one of the most important factors in the anti-infectious resistance of the body’s immune system.

AIM: This study aims to improve the effectiveness of preventing bacterial complications by including nitric oxide inhalations as part of traditional intensive care.

MATERIALS AND METHODS: Ninety-seven full-term newborns without signs of bacterial complications were included in a controlled, randomized, blind clinical trial. The main group (n = 44) received inhaled nitrogen oxide (iNO). The control group (n = 53) did not receive iNO. On days 1, 5, and 20 the plasma concentrations of IL-1β, IL-6, IL-8, TNF-α, G-CSF, sFas, FGF, and NO were determined by capture ELISA; CD3+CD19, CD3CD19+, CD3+CD4+, CD3+CD8+, CD69+, CD71+, CD95+, CD3+HLA-DR+, CD14+, CD3CD56+, Annexin-V+/FITC; PI+/PE — immunophenotype analysis.

RESULTS: In the main group, sepsis developed in 4 patients and 13 controls (p1 = 0.04; p2 = 0.005). Fatalities occurred in 6 patients, and 10 controls (p1 = 0.37; p2 = 0.59) in the main group. The median duration of the IVL in the main group was 5 days, and 10 days for controls (p = 0.00007). Stays in ORIT were main — 11 days for patients in the main group, and 15 days for controls (p = 0.026). On day 3, when compared with controls, patients in the main group had significantly reduced (p < 0.05) of TNF-α, IL-8 and IL-6, CD3+CD69+, CD3+CD95+, lymphocytes in apoptosis, increasing (p < 0.05) G-CSF, sFas, FGF, NO; CD14+, CD3 +CD19.

CONCLUSIONS: iNO used as a part of intensive care decreases the frequency of sepsis development, the duration of mechanical ventilation, and hospitalization. iNO also tends to decrease the lethal outcome frequency, reduces cytokine aggression, inhibits lymphocyte apoptosis, activates the monocyte-macrophage immunity and proliferative processes. It is appropriate to continue research.

作者简介

Marina Pukhtinskaya

Research Institute of Obstetrics and Pediatrics; Rostov State Medical University

编辑信件的主要联系方式.
Email: puhmar@mail.ru
ORCID iD: 0000-0001-5530-2194
SPIN 代码: 3120-7069

Dr. Sci. (Med.), Leading Researcher

俄罗斯联邦, 43, Mechnikova str., Rostov-on-Don, 344012; Rostov-on-Don

Vladimir Estrin

Research Institute of Obstetrics and Pediatrics; Rostov State Medical University

Email: medinsur@aaanet.ru
ORCID iD: 0000-0002-9201-8333
SPIN 代码: 8136-4128

Dr. Sci. (Med.), Professor

俄罗斯联邦, 43, Mechnikova str., Rostov-on-Don, 344012; Rostov-on-Don

参考

  1. Singer M, Deutschman CS, Seymour CW. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016.315(8):801–810. doi: 10.1001/jama.2016.0287
  2. Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585. doi: 10.1136/bmj.i1585
  3. Fleischmann C, Scherag A, Adhikari NK. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med; 2016;193(3):259–272. doi: 10.1164/rccm.201504-0781OC
  4. Fleischmann C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis: a systematic review. The Lancet Respiratory medicine. 2018;6(3):223–230. doi: 10.1016/S2213-2600(18)30063-8
  5. Neonatal Inhaled Nitric Oxide Study Group (NINOS). Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N Engl J Med. 1997;336:597–604. doi: 10.1056/NEJM199702273360901
  6. Bankalari E. Lungs newborns. Problems and contradictions in neonatology. Moscow: Logosfera; 2015. P. 342–354.
  7. Hajishengallis G, Chavakis T, Hajishengallis E, Lambris JD. Neutrophil homeostasis and inflammation: novel paradigms from studying periodontitis. J Leukoc Biol. 2015;98(4):539–548. doi: 10.1189/jlb.3VMR1014-468R
  8. Savchenko AA, Borisov AG, Zdzitovetsky DE, Gvozdev II. Cytokine regulation of respiratory burst in blood neutrophils for prediction of abdominal sepsis in patients with extended purulent peritonitis. Medical Immunology. 2016;18(5):475–482. (In Russ.) doi: 10.15789/1563-0625-2016-5-475-482
  9. Pukhtinskaya MG, Estrin VV. Effect of inhaled nitric oxide on apoptosis of lymphocytes in newborns in critical states. Critical Care. 2014;18(1):288. doi: 10.1186/cc13478
  10. Sosunov AA. Nitric oxide as an intercellular mediator. Soros Educational Journal. 2000;6(12):27–34. (In Russ.)
  11. Shurygina IA, Shurygin MG, Ayushinov NI. Expression of apoptosis markers during development of adhesion process in abdominal cavity in experiment. Journal of the Russian Academy of Medical Sciences. 2014;69(5–6):29–33. (In Russ.)
  12. th International Symposium on Intensive Care and Emergency Medicine. Crit Care. 2018;22(1):P018. doi: 10.1186/s13054-018-1973-5
  13. Youn YА. The role of cytokines in seizures: interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10. Korean J Pediatr. 2013;56(7):271–274. doi: 10.3345/kjp.2013.56.7.271
  14. Solov’eva AG, Kuznetsova VL, Peretyagin SP, et al. The Role of Nitric Oxide in Free-radical Oxidation Processes. Bulletin of the Russian Military Medical Academy. 2016;53(1):228–233. (In Russ.)
  15. Novikov VE, Levchenkova OS, Pozhilova EV. Mitochondrial nitric oxide synthase and its role in the mechanisms of cell adaptation to hypoxia. Reviews of Clinical Pharmacology and Drug Therapy. 2016;14(2):38–46. (In Russ.) doi: 10.17816/RCF14238-46
  16. Burov AA. Nitrogen oxide therapy in neonatology. Neonatology. 2014;(4):45–51. (In Russ.)
  17. Burov AA, Grebennikov VA, Krychko DS. Project clinical practice guideline for persistent pulmonaty hypertension of the newborn: diagnostics and therapy. Neonatology: News, Opinions, Training. 2014;1(3):145–161. (In Russ.)
  18. Bellamy TC, Wood J, Garthwaite J. On the activation of soluble guanylyl cyclase by nitric oxide. Proc Natl Acad Sci USA. 2002;99(1):507–510. doi: 10.1073/pnas.012368499
  19. Field D. Neonatal Ventilation With Inhaled Nitric Oxide Versus Ventilatory Support Without Inhaled Nitric Oxide for Preterm Infants With Severe Respiratory Failure: The INNOVO Multicentre Randomised Controlled Trial (ISRCTN 17821339). Pediatrics; 2005;115(4):926–936. doi: 10.1542/peds.2004-1209
  20. Finer NN, Barrington KJ. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst Rev. 2001;(4):CD0000399. doi: 10.1002/14651858.CD000399.
  21. Ballard RA, Truog WE, Cnaan А. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med. 2006;355(4):343–353. doi: 10.1056/NEJMoa061088
  22. De Nadai C, Sestili Р, Cantoni О, et al. Nitric oxide inhibits tumor necrosis factor-alpha-induced apoptosis by reducing the generation of ceramide. Proc Natl Acad Sci USA. 2000;97(10):5480–5485. doi: 10.1073/pnas.070062397
  23. Reutov VP, Sorokina EG, Kositzin NS. Problems of nitric oxide and cyclic recurrence in biology and medicine. Uspehi sovremennoj biologii. 2005;125(1):41–65. (In Russ.)
  24. Kinsella JP, Cutter GR, Walsh W. Early inhaled nitric oxide therapy in premature newborns with respiratory failure. N Engl J Med. 2006;355(4):354–364. doi: 10.1056/NEJMoa060442
  25. Kinsella JP, Neish SR, Shaffer E. Low dose inhalational nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992;340(8823):819–820. doi: 10.1056/NEJMoa060442
  26. Stabnitsky VA, Chuchalin AG. Inhalation nitric oxide: opportunities to improve oxygenation in acute respiratory distress syndrome. Pulmonology. 2015;25(2):180–186. (In Russ.) doi: 10.18093/0869-0189-2015-25-2-180-186
  27. Puchtinskaya M.G., Estrin V.V. Prevention of bacterial complications by correction of blood T-lymphocytes apoptosis in newborns with respiratory pathology. Medical Herald of the South of Russia. 2013;(4):134–138.
  28. Movchan YeA. Endothelium and thrombocyte disfunction at chronic renal diseases: new look at the old problem of disorders in homeostatic system in glomerulonephritis patients. Bulletin of Siberian Medicine. 2008;Suppl 2:88–96. (In Russ.).
  29. Alekseeva SN, Ivanova ON. Effect of pregnant women ‘s smoking on the anthropometric indicators of newborns. Siberian Medical Journal (Irkutsk). 2013;117(2):81–84. (In Russ.)
  30. Alexandrovitch US, Vizisnov KV. Acute respiratory distress syndrome in pediatric practice. Messenger of Intensive Therapy. 2014;(3):23–29. (In Russ.)
  31. Boytsov EV, Bialashova MA, Ovsyannikov DU. Modern insights into interstitial lung diseases in children. Journal RAMS. 2015;70(2):227–236. (In Russ.) doi: 10.15690/vramn.v70i2.1317
  32. Pukhtinskaya M.G., Estrin V.V., Gulova E.S. Clinical and diagnostic significance of apoptosis in the pathogenesis of neutropenia and bacterial complications in newborns with respiratory distress syndrome. Cytokines and inflammation. 2011;10(2):66–69. (In Russ.).

补充文件

附件文件
动作
1. JATS XML
##common.cookie##