远期结局与新生儿败血症后患儿的康复潜力:文献综述
- 作者: Golomidov A.V.1, Grigoriev E.V.2, Mozes V.G.3, Mozes K.B.1
-
隶属关系:
- S.V. Belyaev Kuzbass Regional Clinical Hospital
- Research Institute for Complex Issues of Cardiovascular Diseases
- Kemerovo State University
- 期: 卷 15, 编号 3 (2025)
- 页面: 357-368
- 栏目: Systematic reviews
- URL: https://journals.rcsi.science/2219-4061/article/view/343615
- DOI: https://doi.org/10.17816/psaic1937
- EDN: https://elibrary.ru/WRDUNN
- ID: 343615
如何引用文章
全文:
详细
新生儿败血症仍是新生儿死亡及远期并发症的重要原因。然而,目前针对败血症存活儿童的康复缺乏循证依据,这突显了系统总结现有数据的必要性。本综述介绍了关于新生儿期经历败血症患儿远期结局及康复潜力的最新研究数据。2019–2024年间的相关文献在PubMed和eLibrary.ru数据库中检索,关键词涉及康复、败血症和新生儿。在去除重复文献并经过多阶段筛选以确保符合综述主题后,共纳入 55 篇相关研究进行分析。文献分析显示,新生儿败血症存在较高的远期多器官并发症风险,包括神经系统障碍(认知缺陷、脑性瘫痪)、感觉功能障碍、支气管肺发育不良和心血管功能异常。本综述指出,目前缺乏统一的新生儿败血症诊断标准、缺乏对经历败血症的新生儿近期和远期结局的评估方案,以及缺乏关于具体康复方法有效性的有力证据。本综述强调了在新生儿中推广现代康复的困难,因为大多数现有的科学和实践方法是基于对早产儿或其他病理患儿康复数据的外推,而在经历败血症的新生儿群体中尚缺乏高质量随机对照试验的验证。综述还描述了现代三阶段康复模式(重症监护期、住院期、门诊期),并探讨了几个主要方向:神经康复(神经保护剂、运动疗法、感觉统合训练)、营养支持(营养强化、蛋白–能量平衡优化、益生元和益生菌)、心理支持 (以家庭为中心的早期干预模式)。本综述指出了一些具有前景但仍需进一步研究的方法,例如应用新型神经保护剂(氙气、达贝泊汀、托吡酯、褪黑素、咖啡因、二甲双胍、氢化可的松、RLS-0071、 干细胞、索瓦替肽)以及间充质基质细胞分泌组。尽管问题具有现实意义,但新生儿败血症患儿的康复仍是循证水平较低的领域。本综述对现有数据进行了系统化整理,强调进一步研究的必要性, 以制定科学依据充分的康复方案,并形成个体化康复路径,旨在改善新生儿的远期预后和生活质量。
作者简介
Alexandr V. Golomidov
S.V. Belyaev Kuzbass Regional Clinical Hospital
编辑信件的主要联系方式.
Email: golomidov.oritn@yandex.ru
ORCID iD: 0000-0001-7522-9094
SPIN 代码: 4406-2065
MD, Cand. Sci. (Medicine)
俄罗斯联邦, KemerovoEvgeny V. Grigoriev
Research Institute for Complex Issues of Cardiovascular Diseases
Email: grigorievev@hotmail.com
ORCID iD: 0000-0001-8370-3083
SPIN 代码: 2316-2287
MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the RAS
俄罗斯联邦, KemerovoVadim G. Mozes
Kemerovo State University
Email: vadimmoses@mail.ru
ORCID iD: 0000-0002-3269-9018
SPIN 代码: 5854-6890
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, KemerovoKira B. Mozes
S.V. Belyaev Kuzbass Regional Clinical Hospital
Email: kbsolo@mail.ru
ORCID iD: 0000-0003-2906-6217
SPIN 代码: 7479-6695
俄罗斯联邦, Kemerovo
参考
- Hayes R, Hartnett J, Semova G, et al. Neonatal sepsis definitions from randomised clinical trials. Pediatr Res. 2023;93(5):1141–1148. doi: 10.1038/s41390-021-01749-3
- McGovern M, Giannoni E, Kuester H, et al. Challenges in developing a consensus definition of neonatal sepsis. Pediatr Res. 2020;88(1):14–26. doi: 10.1038/s41390-020-0785-x
- Molloy EJ, Bearer CF. Paediatric and neonatal sepsis and inflammation. Pediatr Res. 2022; 91(2):267–269. doi: 10.1038/s41390-021-01918-4
- Lekmanov AU, Mironov PI, Alexandrovich YuS, et al. Sepsis in children: federal clinical guidelines (draft). Russian Journal of Pediatric Surgery, Anesthesiology and Intensive Care. 2021;11(2):241–292. doi: 10.17816/psaic969 EDN: UDVCKO
- Aleksandrovich YS, Balashova EN, Boronina IV, et al. Sepsis in newborns (Draft Federal clinical guidelines). Pediatrician St. Petersburg. 2024;15(4):5–53. doi: 10.17816/PED1545-53 EDN: WZPBAT
- Taneri PE, Biesty L, Kirkham JJ, et al. Proposed core outcomes after neonatal sepsis: A consensus statement. JAMA Netw Open. 2025;8(2):e2461554. doi: 10.1001/jamanetworkopen.2024.61554
- Yao YM, Zhang H. Rehabilitation strategy for the improvement of long-term outcomes of patients after sepsis. Zhonghua Shao Shang Yu Chuang MianXiu Fu ZaZhi. 2022;20;38(3):201–206. (In Chinese). doi: 10.3760/cma.j.cn501120-20211004-00344
- Skei NV, Moe K, Nilsen TIL, et al. Return to work after hospitalization for sepsis: a nationwide, registry-based cohort study. Crit Care. 2023;27(1):443. doi: 10.1186/s13054-023-04737-7
- Cai S, Thompson DK, Anderson PJ, Yang JY-M. Short- and long-term neurodevelopmental outcomes of very preterm infants with neonatal sepsis: A systematic review and meta-analysis. Children (Basel). 2019;6(12):131. doi: 10.3390/children6120131
- Bedetti L, Corso L, Miselli F, et al. Neurodevelopmental outcome after culture-proven or so-called culture-negative sepsis in preterm infants. J Clin Med. 2024;13(4):1140. doi: 10.3390/jcm13041140
- Ong WJ, Seng JJB, Yap B, et al. Impact of neonatal sepsis on neurocognitive outcomes: a systematic review and meta-analysis. BMC Pediatr. 2024;24(1):505. doi: 10.1186/s12887-024-04977-8
- Bhat V, Bhandari V. Does neonatal sepsis independently increase neurodevelopmental impairment? Children (Basel). 2022;9(4):568. doi: 10.3390/children9040568
- Thompson DK, Cai S, Kelly CE, et al. Brain volume and neurodevelopment at 13 years following sepsis in very preterm infants. Pediatr Res. 2025;97:744–750. doi: 10.1038/s41390-024-03407-w
- Kartam M, Embaireeg A, Albalool S, et al. Late-onset sepsis in preterm neonates is associated with higher risks of cerebellar hemorrhage and lower motor scores at three years of age. Oman Med J. 2022;37(2):e368. doi: 10.5001/omj.2022.41
- Pugnaloni F, De Rose DU, Kipfmueller F, et al. Assessment of hemodynamic dysfunction in septic newborns by functional echocardiography: a systematic review. Pediatr Res. 2024;95(6):1422–1431. doi: 10.1038/s41390-024-03045-2
- Salimi U, Dummula K, Tucker MH, et al. Postnatal sepsis and bronchopulmonary dysplasia in premature infants: mechanistic insights into “New BPD”. Am J Respir Cell Mol Biol. 2022;66(2):137–145. doi: 10.1165/rcmb.2021-0353PS
- Huang J, Lin X-Z, Zheng Z, et al. Influencing factors for the development and severity of bronchopulmonary dysplasia in preterm infants with a gestational age of <32 weeks and a birth weight of <1500 g. Zhongguo Dang Dai Er Ke Za Zhi. 2022;24(12):1326–1333. (In Chinese). doi: 10.7499/j.issn.1008-8830.2207013
- Gabrielli M, Zaccaria R, Impagnatiello M, et al. Nutritional strategies for the treatment and prevention of sepsis outside the intensive care unit. Nutrients. 2024;16(23):3985. doi: 10.3390/nu16233985
- Kumar J, Anne RP, Meena J, et al. To feed or not to feed during therapeutic hypothermia in asphyxiated neonates: a systematic review and meta-analysis. Eur J Pediatr. 2023;182(6):2759–2773. doi: 10.1007/s00431-023-04950-0
- Boyd RN, Greaves S, Ziviani J, et al. Randomized comparison trial of rehabilitation very early for infants with congenital hemiplegia. J Pediatr. 2025;277:114381. doi: 10.1016/j.jpeds.2024.114381
- Deng W, Anastasopoulos S, deRegnier R-A, et al. Protocol for a randomized controlled trial to evaluate a year-long (NICU-to-home) evidence-based, high dose physical therapy intervention in infants at risk of neuromotor delay. PLoS One. 2023;18(9):e0291408. doi: 10.1371/journal.pone.0291408
- Dall’Orso S, Fifer WP, Balsam PD, et al. Cortical processing of multimodal sensory learning in human neonates. Cereb Cortex. 2021;31(3):1827–1836. doi: 10.1093/cercor/bhaa340
- Beltrán MI, Dudink J, de Jong TM, et al. Sensory-based interventions in the NICU: systematic review of effects on preterm brain development. Pediatr Res. 2022;92(1):47–60. doi: 10.1038/s41390-021-01718-w
- McAdams RM, Berube MW. Emerging therapies and management for neonatal encephalopathy-controversies and current approaches. J Perinatol. 2021;41(4):661–674. doi: 10.1038/s41372-021-01022-9
- Ma X, Shi Y. Whether erythropoietin can be a neuroprotective agent against premature brain injury: Cellular mechanisms and clinical efficacy. Curr Neuropharmacol. 2022;20(3):611–629. doi: 10.2174/1570159X19666210524154519
- Salamah A, El Amrousy D, Elsheikh M, Mehrez M. Citicoline in hypoxic ischemic encephalopathy in neonates: a randomized controlled trial. Ital J Pediatr. 2023;49(1):55. doi: 10.1186/s13052-023-01452-5
- Ranjan AK, Gulati A. Advances in therapies to treat neonatal hypoxic-ischemic encephalopathy. J Clin Med. 2023;12(20):6653. doi: 10.3390/jcm12206653
- Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev. 2023;103(2):1487–1564. doi: 10.1152/physrev.00018.2022
- Bell KA, Cherkerzian S, Drouin K, et al. Associations of macronutrient intake determined by point-of-care human milk analysis with brain development among very preterm infants. Children (Basel). 2022;9(7):969. doi: 10.3390/children9070969
- Fabrizio V, Trzaski JM, Brownell EA, et al. Individualized versus standard diet fortification for growth and development in preterm infants receiving human milk. Cochrane Database Syst Rev. 2020;11(11):CD013465. doi: 10.1002/14651858
- Cuna A, Morowitz MJ, Ahmed I, et al. Dynamics of the preterm gut microbiome in health and disease. Am J Physiol Gastrointest Liver Physiol. 2021;320(4):G411–G419. doi: 10.1152/ajpgi.00399.2020
- Morgan RL, Preidis GA, Kashyap PC, et al. Probiotic, prebiotic, and synbiotic work group. probiotics reduce mortality and morbidity in preterm, low-birth-weight infants: A systematic review and network meta-analysis of randomized trials. Gastroenterology. 2020;159(2):467–480. doi: 10.1053/j.gastro.2020.05.096
- Sharif S, Meader N, Oddie SJ, et al. Probiotics to prevent necrotisingenterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev. 2023;7(7):CD005496. doi: 10.1002/14651858.CD005496.pub6
- Wang Y, Florez ID, Morgan RL, et al. Probiotics, prebiotics, lactoferrin, and combination products for prevention of mortality and morbidity in preterm infants: A systematic review and network meta-analysis. JAMA Pediatr. 2023;177(11):1158–1167. doi: 10.1001/jamapediatrics.2023.3849
- Chi C, Buys N, Li C, et al. Effects of prebiotics on sepsis, necrotizing enterocolitis, mortality, feeding intolerance, time to full enteral feeding, length of hospital stay, and stool frequency in preterm infants: a meta-analysis. Eur J Clin Nutr. 2019;73(5):657–670. doi: 10.1038/s41430-018-0377-6
- Liu J, Zhu H, Li B, et al. Beneficial effect of butyrate on intestinal damage. J Pediatr Surg. 2020;55(6):1088–1093. doi: 10.1016/j.jpedsurg.2020.02.036
- Mueller NT, Dominguez-Bello MG, Appel LJ, Hourigan SK. ‘Vaginal seeding’ after a caesarean section provides benefits to newborn children: FOR: Does exposing caesarean-delivered newborns to the vaginal microbiome affect their chronic disease risk? The critical need for trials of ‘vaginal seeding’ during caesarean section. BJOG. 2020;127(2):301. doi: 10.1111/1471-0528.15979
- Orton J, Doyle LW, Tripathi T, et al. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst Rev. 2024;2(2):CD005495. doi: 10.1002/14651858.CD005495.pub5
- Toma AI, Dima V, Alexe A, et al. Early intervention guided by the general movements examination at term corrected age-short term outcomes. Life (Basel). 2024;14(4):480. doi: 10.3390/life14040480
- Clarke-Sather AR, Compton C, Roberts K, et al. Systematic review of kangaroo care duration’s impact in neonatal intensive care units on infant-maternal health. Am J Perinatol. 2024;41(8):975–987. doi: 10.1055/a-2003-3935
- Lyamina SV, Baranovskiy DS, Kozhevnikova EO, et al. Mesenchymal stromal cells secretome: research methods and diagnostic significance in age-dependent changes and inflammaging-associated conditions (review of literature). Clinical Laboratory Diagnostics. 2024;69(3):140–147. doi: 10.51620.0869-2084-2024-69-3-134-140 EDN: LJMNFO
- Tung S, Delavogia E, Fernandez-Gonzalez A, et al. Harnessing the therapeutic potential of the stem cell secretome in neonatal diseases. Semin Perinatol. 2023;47(3):151730. doi: 10.1016/j.semperi.2023.151730
- Riley LE, Stark AR, Kilpatrick SJ, et al editors. Guidelines for perinatal care. American Academy of Pediatrics; 2012. 576 p.
- Ross K, Heiny E, Conner S, et al. Occupational therapy, physical therapy and speech-language pathology in the neonatal intensive care unit: Patterns of therapy usage in a level IV NICU. Res Dev Disabil. 2017;64:108–117. doi: 10.1016/j.ridd.2017.03.009
- Taito S, Taito M, Banno M, et al. Rehabilitation for patients with sepsis: A systematic review and meta-analysis. PLoS One. 2018;13(7):e0201292. doi: 10.1371/journal.pone.0201292
- Jouffroy R, Djossou F, Neviere R, et al. The chain of survival and rehabilitation for sepsis: concepts and proposals for healthcare trajectory optimization. Ann Intensive Care. 2024;14(1):58. doi: 10.1186/s13613-024-01282-6
- Sakai Y, Yamamoto S, Karasawa T, et al. Effects of early rehabilitation in sepsis patients by a specialized physical therapist in an emergency center on the return to activities of daily living independence: A retrospective cohort study. PLoS One. 2022;17(3):e0266348. doi: 10.1371/journal.pone.0266348
- Perepelitsa SА. Early rehabilitation of newborns moved by perinatal hypoxia. Physical and rehabilitation medicine, medical rehabilitation. 2020;2(1):71–78. doi: 10.36425/rehab19287 EDN: IEWIBI
- Fitzgerald JC, Kelly N-A, Hickey C, et al. Implementation of a follow-up system for pediatric sepsis survivors in a large academic pediatric intensive care unit. Front Pediatr. 2021;9:691692. doi: 10.3389/fped.2021.691692
- Shamsiev AM, Rabbimova DT, Shamsiev ZA. Differentiated approach to the problem of rehabilitation of babies with sepsis. Russian Journal of Pediatric Surgery. 2018;22(5):269–271. doi: 10.18821/1560-9510-2018-22-5269-271 EDN: VLCOMY
- Reddy AR, Stinson HR, Alcamo AM, et al. Pediatric sepsis requiring intensive care admission: potential structured follow-up protocols to identify and manage new or exacerbated medical conditions. Risk Manag Healthc Policy. 2023;16:1881–1891. doi: 10.2147/RMHP.S394458
- Zimmerman JJ, Banks R, Berg RA, et al. Trajectory of mortality and health-related quality of life morbidity following community-acquired pediatric septic shock. Crit Care Med. 2020;48(3):329–337. doi: 10.1097/ccm.0000000000004123
- Sankar J, Moodu S, Kumar K, et al. Functional outcomes at 1 year after PICU discharge in critically ill children with severe sepsis. Pediatr Crit Care Med. 2021;22(1):40–49. doi: 10.1097/pcc.0000000000002592
- Fan J, Wang J, Zhang X, et al. A home-based, post-discharge early intervention program promotes motor development and physical growth in the early preterm infants: a prospective, randomized controlled trial. BMC Pediatr. 2021;21:162. doi: 10.1186/s12887-021-02627-x


