Dynamical properties of direct products of discrete dynamical systems
- 作者: Barinova M.K.1, Shustova E.K.1
-
隶属关系:
- National Research University «High School of Economics»
- 期: 卷 24, 编号 1 (2022)
- 页面: 21-30
- 栏目: Mathematics
- ##submission.dateSubmitted##: 15.12.2025
- ##submission.dateAccepted##: 15.12.2025
- ##submission.datePublished##: 24.02.2022
- URL: https://journals.rcsi.science/2079-6900/article/view/358164
- DOI: https://doi.org/10.15507/2079-6900.24.202201.21-30
- ID: 358164
如何引用文章
全文:
详细
A natural way for creating new dynamical systems is to consider direct products of already known systems. The paper studies some dynamical properties of direct products of homeomorphisms and diffeomorphisms. In particular, authors prove that a chain-recurrent set of the direct product of homeomorphisms is a direct product of the chain-recurrent sets. Another result established in the paper is that the direct product of diffeomorphisms holds hyperbolic structure on the direct product of hyperbolic sets. It is known that if a diffeomorphism has a hyperbolic chain-recurrent set, then this mapping is Ω-stable. Therefore, it follows from the results of the paper that the direct product of Ω-stable diffeomorphisms is also Ω-stable. Another question which is raised in the article concerns the existence of an energy function for the direct product of diffeomorphisms which already have such functions (recall that energy function is a smooth Lyapunov function whose set of critical points coincides with the chain-recurrent set of the system). Authors show that in this case the function can be found as a weighted sum of energy functions of initial diffeomorphisms.
作者简介
Marina Barinova
National Research University «High School of Economics»
Email: mkbarinova@yandex.ru
ORCID iD: 0000-0002-4406-583X
Senior Research Fellow, National Research University «High School of Economics»
俄罗斯联邦, 25/12 B. Pecherskaya St., Nizhny Novgorod 603150, RussiaEvgenia Shustova
National Research University «High School of Economics»
编辑信件的主要联系方式.
Email: ekshustova@gmail.com
ORCID iD: 0000-0002-4998-2186
student, Faculty of Informatics, Mathematics and Computer Science
俄罗斯联邦, 25/12 B. Pecherskaya St., Nizhny Novgorod 603150, Russia参考
- C. Conley, “Isolated Invariant Sets and Morse Index”, Am. Math. Soc., 38 (1978). DOI: https://doi.org/10.1090/cbms/038
- S. Smale, “On gradient dynamical systems”, Annals Math., 74 (1961), 199–206.
- K. Meyer, “Energy functions for Morse-Smale systems”, Amer. J. Math., 90 (1968), 1031–1040.
- J. Franks, “Nonsingular Smale flow on S3”, Topology, 24:3 (1985), 265–282.
- A. E. Kolobyanina, V. E. Kruglov, “Morse-Bott energy function for surface Ω-stable flows”, Zhurnal SVMO, 22:4 (2020), 434–441.
- D. Pixton, “Wild unstable manifolds”, Topology, 16 (1977), 167–172.
- V. Z. Grines,F. Laudenbach, O. V. Pochinka, “Dynamically ordered energy function for Morse-Smale diffeomorphisms on 3-manifolds”, Proceedings of the Steklov Institute of Mathematics, 278 (2012), 27–40. DOI: https://doi.org/10.1134/S0081543812060041
- V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Construction of an energy function for A-diffeomorphisms of one-dimensional non-trivial basic sets”, Dynamic Systems, 5:1- (2015), 31–37.
- M. Barinova, V. Grines, O. Pochinka, B. Yu, “Existence of an energy function for three-dimensional chaotic “sink-source”’ cascades jour Chaos”, 31:6 (2021). DOI:https://doi.org/10.48550/arXiv.2009.10457
- V. Z. Grines, M. K. Noskova, O. V. Pochinka, “The construction of an energy function for three-dimensional cascades with a two-dimensional expanding attractor”, Tr. Mosk. Mat. Obs., 76:2 (2015), 271–286.
- V. Z. Grines, M. K. Noskova, O. V. Pochinka, “Construction of an energy function for A-diffeomorphisms of two-dimensional non-wandering sets on 3-manifolds”, Zhurnal SVMO, 17:3 (2015), 12–17.
- M. Barinova, “On existence of an energy function for Ω-stable surface diffeomorphisms”, Lobachevskii Journal of Mathematics, 43:2 (2022), 257–263.
- C. Robinson, “Dynamical Systems: stability, symbolic dynamics, and chaos”, Studies in Adv. Math., 1999.
补充文件


