Numerical simulation of turbulent flow in a channel with a bend
- 作者: Balabina T.1, Deryugin Y.1, Kudryashov E.1
-
隶属关系:
- RFNC - VNIIEF
- 期: 卷 26, 编号 4 (2024)
- 页面: 424-441
- 栏目: Mathematical modeling and computer science
- ##submission.dateSubmitted##: 28.12.2024
- ##submission.dateAccepted##: 28.12.2024
- ##submission.datePublished##: 27.11.2024
- URL: https://journals.rcsi.science/2079-6900/article/view/274725
- ID: 274725
如何引用文章
全文:
详细
This article presents the results of a numerical study of the turbulent flows’ structure in the construction elements under consideration, for which grid models are constructed that correspond to turbulence modeling approaches. More specifically, these approaches invoke Reynolds Averaged Navier-Stokes equations (RANS), equations closed using one or another semi-empirical turbulence model, as well as vortex–resolving approach, in particular, the method of large vortices modeling (Large Eddy Simulation – LES). The flow calculations were performed both in stationary and non-stationary settings using the LOGOS complex on a parallel supercomputer. From the analysis of the results obtained, it is concluded that the averaged flow parameters found within a non-stationary formulation using a zone RANS-LES transition in the turbulence model qualitatively and quantitatively better coincide with experimental data than the results of stationary calculations based on the use of the RANS approach. Verification of the numerical technique was carried out by experimental data obtained on the FT-18 aerodynamic stand on the basis of Nizhny Novgorod State Technical university named after R.E. Alekseev. A quantitative criterion for the effect of structural changes on the uniformity of the flow is the vorticity level.
作者简介
Tatiana Balabina
RFNC - VNIIEF
编辑信件的主要联系方式.
Email: kaktus2401@mail.ru
ORCID iD: 0000-0001-5765-5014
Head of the Research Group, Department of the Institute of Laser Physics Research
俄罗斯联邦, 10 Muzrukov Ave, Sarov, Nizhny Novgorod region, 607188, RussiaYuriy Deryugin
RFNC - VNIIEF
Email: eakudryashov@vniief.ru
ORCID iD: 0000-0002-3955-775X
D. Sci. (Physics and Mathematics), Chief Researcher
俄罗斯联邦, 10 Muzrukov Ave, Sarov, Nizhny Novgorod region, 607188, RussiaEvgeny Kudryashov
RFNC - VNIIEF
Email: eakudryashov@vniief.ru
ORCID iD: 0009-0000-7407-8191
Head of the Research Group, Department of the Institute of Laser Physics Research
俄罗斯联邦, 10 Muzrukov Ave, Sarov, Nizhny Novgorod region, 607188, Russia参考
- V. V. Kharitonov, Thermophysics of laser mirrors: Textbook, MEPhI Publishing House, Moscow, 1993 (In Russ.), 152 p.
- G. Schlichting, Boundary layer theory, Nauka, Moscow, 1974 (In Russ.), 712 p.
- I. E. Idelchik, Handbook of hydraulic resistance, Mashinostroenie, Moscow, 1992. (In Russ.), 672 p.
- G. Xiaofeng, T. B. Martonen, "Simulations of flow in curved tubes", Aerosol Sci. Technology, 26:6 (1997), 485–504. DOI: https://doi.org/10.1080/02786829708965448.
- Yu. A Bystrov., S. A. Isaev, N. A. Kudryavtsev, A. I. Leontiev, Numerical modeling of vortex heat transfer intensification in pipe packages, Sudostroenie, St. Petersburg, 2005 (In Russ.), 392 p.
- A. V. Garbaruk, M. H. Strelets, A. K. Travin, M. L. Shur, Modern approaches to the modeling of turbulence, Publishing House of the Polytechnic University, St. Petersburg, 2016 (In Russ.), 233 p.
- K. N. Volkov, V. N. Yemelyanov, Modeling of large vortices in calculations of turbulent flows, Fizmatlit, Moscow, 2008 (In Russ.), 368 p.
- F. R. Menter, "Zonal two-equation k - ω turbulence models for aerodynamic flows",
- , 93–2906.
- A. S.Kozelkov, Yu. N. Deryugin, D. K. Zelensky, S. N. Polishchuk, S. V. Lashkin, R. N. Zhuchkov, V. A. Glazunov, S. V. Yatsevich, V. V. Kurulin, Multifunctional software package LOGOS: physico-mathematical models for calculating problems of aero, hydrodynamics and heat and mass transfer, RFNC-VNIIEF, Sarov, 2013 (In Russ.), 67 p.
- Yu. I. Anoshkin, A. A. Dobrov, M. M. Kuzma, I. V. Mineev, M. M. Mulin, M. A. Subarev, "Development and validation of experimental stand ft-18 to study processes of mixing in models of different geometry", Transactions of NNSTU n.a. R.E. Alekseev, 2019, no. 2, 94–104. DOI: https://doi.org/10.46960/1816-210X2019_2_94 (In Russ.).
- D. N. Smolkina, O. N. Borisenko, M. V. Cherenkova, A. G. Giniyatullina, M. V. Kuz'menko, N. V. Chukhmanov, E. V. Potekhina, N. V. Popova, M. R. Turusov, "An automatic generator of unstructured polyhedral grids in the LOGOS software preprocessor", Problems of atomic Science and Technology. Ser. Mathematical
- modeling of physical processes, 2018, no. 2, 25–39 (In Russ.).
- A. Smirnov, S. Shi, I. Celik, "Random flow generation technique for large eddy simulations and particle-dynamics modeling", J. Fluids Eng, 2001, no. 123(2), 359–371. DOI: https://doi.org/10.1115/1.1369598.
- D. Y. Adamian, M. Kh. Strelets, A. K. Travin, "An efficient method of synthetic turbulence generation at les inflow in zonal rans-les approaches to computation of turbulent flows", Mat. Modeling, 2011, no. 23(7), 3–19 (In Russ.).
- J. H. Ferziger, M. Peric, Computational methods for fluid dynamics, Springer, 2002 DOI: https://doi.org/10.1007/978-3-642-56026-2, 423 p.
- R. I. Issa, "Solution of the implicitly discretised fluid flow equations by operatorsplitting", Journal of Computational Physics, 1986, no. 62(1), 40–65. DOI: https://doi.org/10.1016/0021-9991(86)90099-9.
- K. N. Volkov, V. I. Zapryagaev, V. N. Yemelyanov, N. P. Kiseleva, I. V. Teterina, D. A. Gubanov, I. N. Kavun, "Visualization of physical and mathematical modeling data in gas dynamics", 2017 (In Russ.), 338 p.
补充文件



