Analysis of ice cuttings collected during drilling of the snow-firn layer at Vostok Station
- 作者: Vasilev D.A.1, Rakitin I.V.1, Ignatev S.A.1, Bolshunov A.V.1, Ozhigin A.Y.1
-
隶属关系:
- Saint Petersburg Mining University
- 期: 卷 65, 编号 2 (2025)
- 页面: 357-372
- 栏目: Applied studies
- URL: https://journals.rcsi.science/2076-6734/article/view/324835
- DOI: https://doi.org/10.31857/S2076673425020124
- EDN: https://elibrary.ru/foalpv
- ID: 324835
如何引用文章
详细
The size and shape of the ice cuttings influence the choice of drilling regimes, as well as the design of drilling heads, augers, chip chambers, and internal drilling channels. To collect ice chips, two boreholes, VK-22 (30 m) and VK-23 (40 m), were drilled at Vostok station. Sieving was used to analyze the particle size distribution of the ice cuttings at full depth in both boreholes. The shape of the ice particles was examined microscopically at drilling depths of 5, 10, 15, 20, 25, 30, and 35 m of VK-23. The density of the snow-firn layer and the bulk density of ice cuttings were measured. The ice cuttings became finer-grained as the borehole depth increased. The prevailing fraction changes from 1.6–3 mm to 0.4–0.63 mm, the average particle diameter reduces from 1.55 mm to 0.06 mm, and the D10, D50, and D90 values decrease more than twice. The shape analysis revealed that the ice chips are dominated by equant and elongated particles, with medium shape projections described by parameters FF = 0.74 and ER = 0.67. A visual comparison of microscopic images shows that the thickness of the ice cuttings decreases as the depth of the well increases.
作者简介
D. Vasilev
Saint Petersburg Mining University
Email: Vasilev_da@pers.spmi.ru
Saint Petersburg, Russia
I. Rakitin
Saint Petersburg Mining University
Email: Vasilev_da@pers.spmi.ru
Saint Petersburg, Russia
S. Ignatev
Saint Petersburg Mining University
Email: Vasilev_da@pers.spmi.ru
Saint Petersburg, Russia
A. Bolshunov
Saint Petersburg Mining University
Email: Vasilev_da@pers.spmi.ru
Saint Petersburg, Russia
A. Ozhigin
Saint Petersburg Mining University
编辑信件的主要联系方式.
Email: Vasilev_da@pers.spmi.ru
Saint Petersburg, Russia
参考
- Большунов А.В., Васильев Д.А., Дмитриев А.Н., Игнатьев С.А., Кадочников В.Г., Крикун Н.С., Сербин Д.В., Шадрин В.С. Результаты комплексных экспериментальных исследований на станции Восток в Антарктиде // Записки Горного института. 2023. Т. 263. С. 724–741. EDN WQNJET
- Екайкин А.А., Чихачев К.Б., Верес А.Н., Липенков В.Я., Тебенькова Н.А., Туркеев А.В. Профиль плотности снежно-фирновой толщи в районе станции Восток, Центральная Антарктида // Лёд и Снег. 2022. Т. 62. № 4. С. 504–511. https://doi.org/10.31857/S2076673422040147
- Игнатьев С.А., Васильев Д.А., Большунов А.В., Васильева М.А., Ожигин А.Ю. Экспериментальные исследования переноса ледяного шлама воздухом при бурении снежно-фирновой толщи // Лёд и Снег. 2023. Т. 63. № 1. С. 141–152. https://doi.org/10.31857/S2076673423010076
- Капустин А.В. Некоторые особенности производства метеорологических измерений на антарктической станции Восток // Colloquium-journal. 2019. № 9 (33). С. 17–25. https://doi.org/10.24411/2520-6990-2019-10216
- Липенков В.Я., Полякова Е.В., Дюваль П., Преображенская А.В. Особенности строения антарктического ледникового покрова в районе станции Восток по результатам петроструктурных исследований ледяного керна // Проблемы Арктики и Антарктики. 2007. № 2 (76). С. 68–77.
- Сербин Д.В., Дмитриев А.Н. Экспериментальные исследования теплового способа бурения плавлением скважины в ледовом массиве с одновременным контролируемым расширением ее диаметра // Записки Горного института. 2022. Т. 257. С. 833–842. https://doi.org/10.31897/PMI.2022.82
- Верес А.Н., Екайкин А.А., Липенков В.Я., Туркеев А.В., Ходжер Т.В. Первые данные о климатической изменчивости в районе ст. Восток (Центральная Антарктида) за последние 2000 лет по результатам изучения снежно-фирнового керна // Проблемы Арктики и Антарктики. 2020. 66 (4). C. 482–500. https://doi.org/10.30758/0555-2648-2020-66-4-482-500
- Blott S.J., Pye K. Particle shape: a review and new methods of characterization and classification // Sedimentology. 2007. 55 (1). P. 31–63. https://doi.org/10.1111/j.1365-3091.2007.00892.x
- Clarke G.K.C. A short history of scientific investigations on glaciers // Journ. of Glaciology. 1987. № 33 (S1). P. 4–24. https://doi.org/10.3189/S0022143000215785
- Dengaev A.V. Mechanical Impurities Carry-Over from Horizontal Heavy Oil Production Well // Processes. 2023. № 11. P. 2932. https://doi.org/11.2932.10.3390/pr11102932
- Ekaykin A.A., Lipenkov V.Ya., Tebenkova N. Fifty years of instrumental surface mass balance observations at Vostok Station, Central Antarctica // Journ. of Glaciology. 2023. P. 1–13. https://doi.org/10.1017/jog.2023.53
- Gibson C. RAM-2 Drill system development: an upgrade of the Rapid Air Movement Drill // Annals of Glaciology. 2020. V. 62 (84). P. 1–10. https://doi.org/10.1017/aog.2020.72
- Goodge J.W., Severinghaus J.P., Johnson J., Tosi D., Bay R. Deep ice drilling, bedrock coring and dust logging with the Rapid Access Ice Drill (RAID) at Minna Bluff, Antarctica // Annals of Glaciology. 2021. V. 62. P. 1–16. https://doi.org/10.1017/aog.2021.13
- Hu Zh., Talalay P.G., Zheng Zh., Cao P., Shi G., Li Y., Fan X., Ma H. Air reverse circulation at the hole bottom in ice-core drilling // Journ. of Glaciology. 2019. V. 65. P. 149–156. https://doi.org/10.1017/jog.2018.95
- Hong J., Fan X., Liu Y., Liu G., Liu B., Talalay P. Size distribution and shape characteristics of ice cuttings produced by an electromechanical auger drill // Cold Regions Science and Technology. 2015. V. 119. P. 204–210. https://doi.org/10.1016/j.coldregions.2015.08.012
- Hong J., Talalay P., Sysoev M., Fan X. DEM modeling of ice cuttings transportation by electromechanical auger core drills // Annals of Glaciology. 2014. V. 55 (68). P. 65–71. https://doi.org/10.3189/2014AoG68A002
- Hou Zh., Liu Y., Meng Q., Xu H., Liang N., Yang G. Investigation of the dynamic ascent characteristics of ice core during polar core drilling // Cold Regions Science and Technology. 2024. 222. 104184. https://doi.org/10.1016/j.coldregions.2024.104184
- International Organization for Standardization. ISO 13322–1:2014 Particle size analysis – Image analysis methods – Part 1: Static image analysis methods, 2nd ed. Geneva: International Organization for Standardization, 2014.
- International Organization for Standardization. ISO 9276–1:1998 Representation of results of particle size analysis – Part 1: Graphical representation, 2nd ed. Geneva: International Organization for Standardization, 1998.
- Kern J., Montagna G., Borges M. Techniques for determining size and shape of drill cuttings // Brazilian Journal of Petroleum and Gas. 2022. V. 16 (2). P. 6577. https://doi.org/10.5419/bjpg2022-0006
- Kyzym I., Reyes R., Rana P., Molgaard J., Butt S. Cuttings Analysis for Rotary Drilling Penetration Mechanisms and Performance Evaluation // Conference: ARMA 2015. 49th US Rock Mechanics. 2015.
- Litvinenko V.S. Foreword: Sixty-year Russian history of Antarctic sub-glacial lake exploration and Arctic natural resource development // Geochemistry. 2020. 80 (3). https://doi.org/10.1016/j.chemer.2020.125652
- Litvinenko V.S., Leitchenkov G.L., Vasiliev N.I. Anticipated sub-bottom geology of Lake Vostok and technological approaches considered for sampling // Geochemistry. 2020. 80. https://doi.org/10.1016/j.chemer.2019.125556
- Merkus H.G. Particle Size Measurements Fundamentals, Practice, Quality. Springer, 2009.
- Mikhalenko V., Kutuzov S., Toropov P., Legrand M., Sokratov S., Chernyakov G., Lavrentiev I., Preunkert S., Kozachek A., Vorobiev M., Khairedinova A., Lipenkov V. Accumulation rates over the past 260 years archived in Elbrus ice core, Caucasus // Climate of the Past. 2024. V. 20. P. 237–255. https://doi.org/10.5194/cp-20-237-2024
- Ren Z., Gao H., Luo W., Elser J. Bacterial communities in surface and basal ice of a glacier terminus in the headwaters of Yangtze River on the Qinghai–Tibet Plateau // Environmental Microbiome. 2022. № 17 (12). P. 1–14. https://doi.org/10.1186/s40793-022-00408-2
- Rodriguez J., Edeskär T., Knutsson S. Particle shape quantities and measurement techniques: a review // The electronic journal of geotechnical engineering. 2013. 18. P. 169–198.
- Talalay P.G. Removal of cuttings in deep ice electromechanical drills // Cold Regions Science and Technology. 2006. 44 (2). P. 87–98. https://doi.org/10.1016/j.coldregions.2004.08.005
- Talalay P.G. Mechanical Ice Drilling Technology. Singapore: Springer, 2016.
- Veres A.N., Ekaykin A.A., Golobokova L.P., Khodzher T.V., Khuriganowa O.I., Turkeev A.V. A record of volcanic eruptions over the past 2,200 years from Vostok firn cores, central East Antarctica // Front. Earth Science. 2023. № 11. P. 1075739. https://doi.org/10.3389/feart.2023.1075739
- Zhang Z., Lan X., Wen G., Qingming L., Yang X. An Experimental Study on the Particle Size and Shape Distribution of Coal Drill Cuttings by Dynamic Image Analysis // Geofluids. 2021. P. 1–11. https://doi.org/10.1155/2021/5588248
补充文件
