The Future Glacial Cycle and Its Reflection in the Glacial Cycles of the Late Pleistocene
- Авторлар: Vakulenko N.V.1, Sonechkin D.M.1
-
Мекемелер:
- Shirshov Institute оf Oceanology, Russian Academy of Sciences
- Шығарылым: Том 65, № 2 (2025)
- Беттер: 315-326
- Бөлім: Palaeoglaciology
- URL: https://journals.rcsi.science/2076-6734/article/view/324832
- DOI: https://doi.org/10.31857/S2076673425020095
- EDN: https://elibrary.ru/fokhsx
- ID: 324832
Дәйексөз келтіру
Аннотация
As a result of applying the principle of symmetry and the similarity property to the glacial cycles of the Late Pleistocene, an analogy was found in the climate dynamics of the Milankovich glacial cycles. This made it possible to outline the future glacial cycle, determine its configuration and duration.
Авторлар туралы
N. Vakulenko
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: vanava139@yandex.ru
Moscow, Russia
D. Sonechkin
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: vanava139@yandex.ru
Moscow, Russia
Әдебиет тізімі
- Большаков В.А. Исследование характеристик “среднеплейстоценового перехода” с помощью сопоставления изотопно-кислородной записи LR04 с орбитально-климатической диаграммой // Доклады Академии наук. 2013. Т. 449. № 3. С. 338–341.
- Вакуленко Н.В., Иващенко Н.Н., Котляков В.М., Сонечкин Д.M. О бифуркации умножения периода ледниковых циклов в начале плейстоцена // Доклады Академии наук. 2011. Т. 436. № 4. С. 1541–1544.
- Вакуленко Н.В., Котляков В.М., Монин А.С., Сонечкин Д.М. Особенности календаря ледниковых циклов позднего плейстоцена // Известия РАН. Физика атмосферы и океана. 2007. Т. 43. № 6. С. 773–782.
- Вакуленко Н.В., Котляков В.М., Монин А.С., Сонечкин Д.M. Симметрия ледниковых циклов позднего плейстоцена по данным станций «Восток» и «Купол С» в Антарктике // Доклады Академии наук. 2005. Т. 407. № 1. С. 111–114.
- Вакуленко Н.В., Котляков В.М., Сонечкин Д.М. Об увеличении изменчивости глобального климата примерно за 400 тыс. лет до настоящего времени // Доклады Академии наук. 2014. Т. 456. № 5. С. 600–603. https://doi.org/10.7868/S0869565214170277
- Barth A.M., Clark P.U., Bill N.S., He F., Pisias N.G. Climate evolution across the Mid-Brunhes Transition // Climate of the Past. 2018. V. 14. P. 2071–2087. https://doi.org/10.5194/cp-14-2071-2018
- Berger W.H., Wefer G. On the dynamics of the ice ages: stage-11 paradox, mid-Brunhes climate shift, and 100-ky cycle // Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question. 2003. V. 137. P. 41–59. https://doi.org/10.1029/137GM04
- Crucifix M., Loutre F., Berger A. The Climate Response to the Astronomical Forcing // Space Science Reviews. 2007. V. 125 (1–4). P. 213–226. https://doi.org/10.1007/978-0-387-48341-2_17
- Hobart B., Lisiecki L.E., Rand D., Lee T., Lawrence C.E. Late Pleistocene 100-kyr glacial cycles paced by precession forcing of summer insolation // Nature Geoscience. 2023. V. 16. P. 717–722. https://doi.org/10.1038/s41561-023-01235-x
- Imbrie J., Imbrie J.Z. Modelling the climatic response to orbital variations // Science. 1980. V. 207. P. 943–953.
- Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M., Vakulenko N.V. On bifurcations inducing glacial cycle lengthening during pliocene/pleistocene epoch // International Journ. of Bifurcation and Chaos. 2014. V. 24. № 8. 1440018. https://doi.org/10.1142/S0218127414400185
- Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M., Vakulenko N.V. On the nature of the Pliocene / Pleistocene glacial cycle lengthening // Global Perspectives on Geography. 2013. V. 1. P. 9–20.
- Kawamura K, Aoki S., Nakazawa T., Abe-Ouchi A., Saito F. Timing and duration of the last five interglacial periods from an accurate age model of the Dome Fuji Antarctic ice core // American Geophysical Union, Fall Meeting. 2010. Abstract ID PP43D-04.
- Laskar J., Joutel F., Gastineau M., Correia A.C.M., Levrard B. A long-term numerical solution for the insolation quantities of the Earth // Astronomy and Astrophysics. 2004. V. 428. P. 261–285.
- Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed bentic δ18O records // Paleoceanology. 2005. V. 20. PA1003. https://doi.org/10.1029/2004PA001071
- Loutre M.F., Berger A. Marine Isotope Stage 11 as an analogue for the present interglacial // Global and Planetary Change. 2003. V. 36. № 3. P. 209–217. https://doi.org/10.1016/S0921-8181(02)00186-8
- McManus J.F., Oppo D.W., Cullen J.L. Marine isotope stage 11 (MIS 11): analog for Holocene and future climate? In: A.W. Droxler, R.Z. Poore, L.H. Burckle. Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11. Question. 2003. V. 137. P. 69–85.
- Rial J.A. Pacemaking the ice ages by frequency modulation of Earth’s orbital eccentricity // Science. 1999. V. 285. P. 564–568.
- Snyder C. Evolution of global temperature over the past two million years // Nature. 2016. V. 38. P. 226–228. https://doi.org/10.1038/nature19798
- Talento S., Ganopolski A. Reduced-complexity model for the impact of anthropogenic CO2 emissions on future glacial cycles // Earth System Dynamics. 2021. V. 12. P. 1275–1293. https://doi.org/10.5194/esd-12-1275-2021
- Tzedakis P.C., Channell J.E.T., Hodell D.A., Kleiven H.F., Skinne L.C. Determining the natural length of the current interglacial // Nature Geoscience. Letters. 2012a. V. 5. Is. 2. P. 138–141. https://doi.org/10.1038/NGEO1358
- Tzedakis P.C., Crucifix M., Mitsui T., Wolff E.W. A simple rule to determine which insolation cycles lead to interglacials // Nature. 2017. V. 542. Is. 7642. P. 427–432. https://doi.org/10.1038/nature21364
- Tzedakis P.C., Hodell D.A., Nehrbass-Ahles C., Mitsui T., Wolff E.W. Marine Isotope Stage 11c: An unusual // Quaternary Science Reviews. 2022. V. 284. 107493. https://doi.org/10.1016/j.quascirev.2022.107493
- Tzedakis P.C. The MIS 11 – MIS 1 analogy, southern European vegetation, atmospheric methane and the “early anthropogenic hypothesis” // Climate of the Past. 2010. V. 6. P. 131–144. https://doi.org/10.5194/cp-6-131-2010
- Tzedakis P.C., Wolff E.W., Skinner L.C., Brovkin V., Hodell D.A., McManus J.F., Raynaud D. Can we predict the duration of an interglacial? // Climate of the Past. 2012b. V. 8. P. 1473–1485. https://doi.org/10.5194/cp-8-1473-2012
- Tziperman E., Gildor H. On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times // Paleoceanography. 2003. V. 18. № 1. 1001. https://doi.org/10.1029/2001PA000627
- Tziperman E., Raymo M.E., Huybers P., Wunsch C. Consequences of pacing the Pleistocene 100-kyr ice ages by nonlinear phase locking to Milankovitch forcing // Paleoceanography. 2006. V. 21. PA4206. https://doi.org/10.1029/2005PA0012415
- Witkowski C.R., von der Heydt A.S., Valdes P.J., van der Meer M.T.J., Schouten S., Sinninghe Damsté J.S. Continuous sterane and phytane δ13C record reveals a substantial pCO2 decline since the mid-Miocene // Nature Communications. 2024. V. 15. № 1. 5192. https://doi.org/10.1038/s41467-024-47676-9
Қосымша файлдар
