Identification of tephra horizons in a glacier on the Ushkovsky volcano (Kamchatka)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Identification of tephra and its allocation (association) with known eruptive events allows obtainng chronostratigraphic markers, on the basis of which an age scale for dating glacial strata can be developed. To determine the sources of ash in the ice core obtained in 2022 during drilling of glacier in the crater of the Ushkovsky volcano in Kamchatka, the chemical composition of volcanic glass in individual ash particles was analyzed. The accuracy of determination of the volcanic glass composition was verified by analyzing of international standard samples of volcanic and synthetic glass. Based on a comparison of the data we obtained with published data on the composition of tephra glasses from the present-day eruptions in Kamchatka, we determined affiliation of each tephra horizon to specific volcano-source. We have found that the main source of tephra in the ice core of the Ushkovsky Glacier is the Kliuchevskoi volcano, which is the closest and the most productive one among the Kamchatka volcanoes. Ash particles from Bezymyannyi volcano were identified in two horizons. A mixed population of particles was found in one of the horizons, including the ash particles from volcanoes Kizimen, Kliuchevskoi and Bezymyannyi. Analysis of published data on the chronology and distribution of ash plumes from known eruptive events made it possible to confidently correlate the tephra horizon at a depth of 762–777 cm with the initial phase of the eruption of the Kizimen volcano in late 2010–early 2011. Ash from the uppermost tephra buried in the glacier at depths of 89–94 cm belongs to the Bezymyannyi volcano eruption, which the most likely occurred in October 2020. Single particles with rhyolitic composition of glass in the sample from the depth of 348–354 cm may belong to the eruption of the Shiveluch volcano in December 2018. The results of our work can be used on further studying of the ice core from the Ushkovsky volcano, in particular for comparison and correlation with the chronostratigraphic data obtained by glacio-chemical and isotope methods.

Full Text

Restricted Access

About the authors

N. V. Gorbach

Institute of Volcanology and Seismology, FEB RAS; Institute of Geography, Russian Academy of Sciences

Author for correspondence.
Email: n_gorbach@mail.ru
Russian Federation, Petropavlovsk-Kamchatsky; Moscow

T. M. Philosofova

Institute of Volcanology and Seismology, FEB RAS

Email: n_gorbach@mail.ru
Russian Federation, Petropavlovsk-Kamchatsky

V. N. Mikhalenko

Institute of Geography, Russian Academy of Sciences

Email: n_gorbach@mail.ru
Russian Federation, Moscow

References

  1. Vlodavets V. I., Piip B. I. Catalogue of active volcanoes of Kamchatka. Bulleten vulkanologicheskich stantsiy. Bulletin of volcanological stations. Moscow: USSR Academy of Sciences. 1957, 25: 5–95 [In Russian].
  2. Girina O. A., Lupyan E. A., Sorokin A. A. Melnikov D. V., Romanova I. M., Kashnitsky A. V., Uvarov I. A., Malkovskiy S. I., Korolev S. P., Manevich A. G., Kramareva L. S. Komplexny monitoring explosivnich izverzheniy vulkanov Kamchatki. Integrated Monitoring of Explosive Eruptions of Kamchatka Volcanoes. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS, 2018: 192 p. [In Russian].
  3. Girina O. A., Manevich A. G., Melnikov D. V., Nuzdaev A. A., Demyanchuk Y. V. Activity of Kamchatka volcanoes in 2013. Vulkanism i svyazannye c nim procesy. Proc. of the regional conference Volcanism and related processes dedicated to the Day of Volcanologist, 27–28 March 2014. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS, 2014: 38–45 [In Russian].
  4. Girina O. A., Gorbach N. V., Davydova V. O. Melnikov D. V., Manevich T. M., Manevich A. G., Demyanchuk Yu. V. The 15 March 2019 Bezymianny Volcano Explosive Eruption and Its Products. Vulkanologiya i sejsmologiya. Volcanology and seismology. 2020, 14: 394–409. https://doi.org/10.1134/S0742046320060032 [In Russian].
  5. Girina O. A., Melnikov D. V., Manevich A. G., Nuzdaev A. A., Romanova I. M., Lupyan E. A., Kashnitsky A. V., Sorokin A. A., Kramareva L. S. Explosive eruption of Bezymyannyi volcano on 21 October 2020. Vulkanism i svyazannye c nim procesy. Volcanism and related processes. Proceedings of the XXIV Annual Scientific Conference dedicated to the Day of Volcanologist, 29–30 March 2021. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS, 2021: 29–31 [In Russian].
  6. Gorbach N. V., Portnyagin M. V., Filosofova T. M. Dynamics of exrtrusive dome growth and variations in chemical and mineralogical composition of Young Shiveluch andesites in 2001–2013. Vulkanologiya i sejsmologiya. Volcanology and seismology. 2016, 6: 37–61. https://doi.org/10.7868/S0203030616060031 [In Russian].
  7. Gorbach N. V., Plechova A. A., Manevich T. M., Portnyagin M. V., Filosofova T. M., Samoylenko S. B. The Composition of Volcanic Ash and the Dynamics of the 2013–2016 Zhupanovsky Volcano Eruption. Vulkanologiya i sejsmologiya. Volcanology and seismology. 2018, 3: 3–20. https://doi.org/10.7868/S020303061803001X [In Russian].
  8. Gorbach N. V., Filosofova T. M., Melnikov D. V., Manevich T. M. The Composition of Volcanic Glasses in the 2020–2021 Ejecta of the Summit Eruption and the Gorshkov Flank Vent at Klyuchevskoi Volcano: A Comparative Analysis and Interpretation. Vulkanologiya i sejsmologiya. Volcanology and seismology. 2022, 2: 28–37. https://doi.org/10.31857/S0203030622010035 [In Russian].
  9. Gushchenko I. I. Izverzheniya vulkanov mira. Katalog. Volcanic eruptions of the world. Catalogue. Moscow: Nauka, 1979: 476 p. [In Russian].
  10. Malik N. A., Maksimov A. P., Ananiev V. V. Eruption of Kizimen volcano in 2010–2012 and its products. Vulkanism i svyazannye c nim procesy. Volcanism and related processes. Proceedings of the Annual Scientific Conference, dedicated to the Day of Volcanologist, 29–30 March 2012. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS, 2012: 64–70 [In Russian].
  11. Manevich A. G., Girina O. A., Melnikov D. V., Nuzdaev A. A., Demyanchuk Y. V., Kotenko T. A. Activity of volcanoes of Kamchatka and the Kurils in 2018. Vulkanism i svyazannye c nim procesy. Volcanism and related processes. Proceedings of the XXII All-Russian Scientific Conference dedicated to the Day of Volcanologist, 28–29 March 2019. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS, 2019: 28–31 [In Russian].
  12. Melnikov D. V., Dvigalo V. N., Melekestsev I. V. Eruption 2010–2011 of the Kamchatka volcano Kizimen: dynamics of eruptive activity and geological and geomorphological effect (based on remote sensing data). Vestnik Kamchatskoy regional’noy assotsiatsii “Uchebno-nauchnyy tsentr”. Seriya: Nauki o Zemle. Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences. 2011, 2: 87–101 [In Russian].
  13. Murav’yev Y.D., Ovsyannikov A. A., Shiraiwa T. Activity of volcanoes of the Northern Group according to drilling data in the crater glacier (Ushkovsky Volcano, Kamchatka). Vulkanologiya i sejsmologiya. Volcanology and Seismology. 2007, 1: 47–57 [In Russian].
  14. Ozerov A. Yu., Girina O. A., Zharinov N. A., Belousov A. B., Demyanchuk Y. V. Volcanic eruptions of the Northern group of Kamchatka volcanoes in the early XXI century. Vulkanologiya i sejsmologiya. Volcanology and seismology. 2020, 1: 3–19. https://doi.org/10.31857/S0203030620010058 [In Russian].
  15. Ozerov A. Yu. Kluchevskoy vulkan: vesсhestvo, dinamika, model. Kliuchevskoi volcano: substance, dynamics, model. Moscow: GEOS, 2019: 306 p. [In Russian].
  16. Ponomareva V. V., Portnyagin M. V., Melnikov D. V. Tephra composition of modern (2009–2011) volcanic eruptions of Kamchatka and Kuril Islands. Vestnik Kamchatskoy regional’noy assotsiatsii “Uchebno-nauchnyy tsentr”. Seriya: Nauki o Zemle. Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences. 2012, 2 (49): 5–9 [In Russian].
  17. Abbot P. M., Davies S. M. Volcanism and the Greenland ice-cores: the tephra record. Earth-Science Reviews. 2012, 115 (3): 1730191. https://doi.org/10.1016/j.earscirev.2012.09.001
  18. Auer A., Belousov A., Belousova M. Deposits, petrology and mechanism of the 2010–2013 eruption of Kizimen volcano in Kamchatka, Russia. Bulletin of Volcanology. 2018, 80: 33. https://doi.org/10.1007/s00445–018–1199-z
  19. Cole-Dai J., Mosley-Thompson E., Wight S. P., Thompson L. G. A 4100-year record of explosive volcanism from an East Antarctica ice core. Journ. of Geophys. Research. 2000, 105: 24431–24441. https://doi.org/10.1029/2000JD900254
  20. Cook E., Portnyagin M., Ponomareva V., Bazanova L., Anders S., Garbe-Schönberg D. First identification of cryptotephra from the Kamchatka Peninsula in a Greenland ice core: Implications of a widespread marker deposit that links Greenland to the Pacific northwest. Quaternary Science Reviews. 2018, 181: 200–206. https://doi.org/10.1016/j.quascirev.2017.11.036
  21. Cook E., Abbott P. M., Pearce N., Mojtabavi S., Svensson A., Bourne A. J., Rasmussen S. O., Seierstad I. K., Vinther Bo.M., Harrison J., Street E., Steffensen J. P., Wilhelms F., Davies S. M. Volcanism and the Greenland ice cores: A new tephrochronological framework for the last glacial-interglacial transition (LGIT) based on cryptotephra deposits in three ice cores. Quaternary Science Reviews. 2022, 292: 107596. https://doi.org/10.1016/j.quascirev.2022.107596
  22. Davydova V. O., Shcherbakov V. D., Plechov P. Y., Koulakov I. Y. Petrological evidence of rapid evolution of the magma plumbing system of Bezymianny volcano in Kamchatka before the December 20th, 2017 eruption. Journ. of Volcanology and Geothermal Research. 2022, 421: 107422. https://doi.org/10.1016/j.jvolgeores.2021.107422
  23. Fiacco Jr., Thordarson R. J. T., Germani M. S., Self S., Palais J. M., Whitlow S., Grootes P. M. Atmospheric aerosol loading and transport due to the 1783–84 Laki eruption in Iceland, interpreted from ash particles and acidity in the GISP2 ice core. Quaternary Research. 1994, 42 (3): 231–240.
  24. Girina O. A. Chronology of Bezymianny Volcano activity, 1956–2010. Journ. of Volcanology and Geothermal Research. 2013, 263: 22–41. https://doi.org/10.1016/j.jvolgeores.2013.05.002
  25. Gorbach N. V., Philosofova T. M., Portnyagin M. V. Amphibole record of 1964 plinian and following dome-forming eruptions of Shiveluch volcano, Kamchatka. Journ. of Volcanology and Geothermal Research. 2020, 407: 107108. https://doi.org/10.1016/j.jvolgeores.2020.107108
  26. Jarosewich E., Nelen J. A., Norberg J. A. Reference Samples for Electron Microprobe Analysis. Geostand. Newslett. 1980, 4: 43–47.
  27. Jochum K. P., Stoll B., Herwig K., Willbold M., Hofmann A. W., Amini M., Aarburg S., Abouchami W., Hellebrand E., Mocek B., Raczek I., Stracke A., Alard O., Bouman C., Becker S., Dücking M., Brätz H., Klemd R., de Bruin D., Canil D., Cornell D., de Hoog C.-J., Dalpé C., Danyushevsky L., Eisenhauer A., Gao Y., Snow J. E., Groschopf N., Günther D., Latkoczy Ch., Guillong M., Hauri E. H., Höfer H. E., Lahaye Y., Horz K., Jacob D. E., Kasemann S. A., Kent A. J.R., Ludwig T., Zack T., Mason P. R.D., Meixner A., Rosner M., Misawa K., Nash B. P., Pfänder J., Premo W. R., Sun W. D., Tiepolo M., Vannucci R., Vennemann T., Wayne D., Woodhead J. D. MPI-DING reference glasses for in situ microanalysis. New reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst. 2006, 7 (2): Q02008. https://doi.org/10.1029/2005GC001060
  28. Jochum K. P., Willbold M., Raczek I., Stoll B., Herwig K. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICPMS and LA-ICPMS. Geostandards and Geoanalytical Research. 2005, 29 (3): 285–302. https://doi.org/10.1111/j.1751-908X.2005.tb00901.x
  29. Kuehn S. C., Froese D. G., Shane P. A. The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: results and recommendations. Quaternary International. 2011, 246 (1–2): 19–47. https://doi.org/10.1016/j.quaint.2011.08.022
  30. Lane C. S., Brauer A., Blockley S. P.E., Dulskim P. Volcanic ash reveals time-transgressive climate change during the Younger Dryas. Geology. 2013, 41 (12): 1251–1254. https://doi.org/10.1130/G34867.1
  31. Le Bas M. J., Le Maitre R. W., Streckeisen A., Zanettin B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journ. of Petrology. 1986, 27: 745–750. https://doi.org/10.1093/petrology/27.3.745
  32. Lin J., Svensson A., Hvidberg C. S., Lohmann J., Kristiansen S., Dahl-Jensen D., Steffensen J. P., Rasmussen S. O., Cook E., Kjær H. A., Vinther B. M. Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka). Climate of the Past. 2022, 18 (3): 485–506.
  33. Lowe D. J., Pearce N. J., Jorgensen M. A., Kuehn S. C., Tryon C. A., Hayward C. L. Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: review and evaluation. Quaternary Science Reviews. 2017, 175: 1–44.
  34. Lowe J., Barton N., Blockley S., Ramsey Ch.B., Cullen V. L., Davies W., Gamble C., Grant K., Hardiman M., Housley R., Lane Ch.S., Lee Sh., Lewis M., MacLeod A., Menzies M., Müller W., Pollard M., Price C., Roberts A. P., Rohling E. J., Satow C., Smith V. C., Stringer C. B., Tomlinson E. L., White D., Albert P., Arienzo I., Barker G., Borić D., Carandente A., Civetta L., Ferrier C., Guadelli J.—L., Karkanas P., Koumouzelis M., Müller U. C., Orsi G., Pross J., Rosi M., Shalamanov-Korobar L., Sirakov N., Tzedakis P. C. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences. 2012, 109 (34): 13532–13537.
  35. Melnikov D., Volynets A. O. Remote sensing and petrological observations on the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka: Implications for reconstruction of the eruption chronology. Journ. of Volcanology and Geothermal Research. 2015, 307: 89–97. https://doi.org/10.1016/j.jvolgeores.2015.09.025
  36. Mikhalenko V. N., Kutuzov S. S., Toropov P. A., Legrand M., Sokratov S. A., Chernyakov G. A., Lavrentiev I. I., Preunkert S., Kozachek A., Vorobiev M. A., Khairedinova A. G., Lipenkov V. Ya. Accumulation rates over the past 260 years archived in Elbrus ice core, Caucasus. Climate of the Past. Discussions. 2023. https://doi.org/10.5194/cp-2023-46
  37. Plunkett G., Sigl M., McConnell J.R., Pilcher J. R., Chellman N. J. The significance of volcanic ash in Greenland ice cores during the Common Era. Quaternary science reviews. 2023, 301: 107936. https://doi.org/10.1016/j.quascirev.2022.107936
  38. Ponomareva V., Portnyagin M., Pevzner M., Blaauw M., Kyle Ph., Derkachev A. Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass. International Journ. of Earth Sciences. 2015, 104 (5): 1459–1482. https://doi.org/10.1007/s00531-015-1156-4
  39. Ponomareva V., Pendea I. F., Zelenin E., Portnyagin M., Gorbach N., Pevzner M., Plechova A., Derkachev A., Rogozin A., Garbe-Schönberg D. The first continuous late Pleistocene tephra record from Kamchatka Peninsula (NW Pacific) and its volcanological and paleogeographic implications. Quaternary Science Reviews. 2021, 257: 106838. https://doi.org/10.1016/j.quascirev.2021.106838
  40. Portnyagin M. V., Ponomareva V. V., Zelenin E. A., Bazanova L. I., Pevzner M. M., Plechova A. A., Rogozin A. N., Garbe-Schönberg D. TephraKam: geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (northwestern Pacific). Earth System Science Data. 2020, 12 (1): 469–486. https://doi.org/10.5194/essd-12-469-2020
  41. Shiraiwa T., Murav’yev Y.D., Kameda T., Nishio F., Toyama Y., Takahashi A., Ovsyannikov A. A., Salamatin A. N., Yamagata K. Characteristics of a crater glacier at Ushkovsky volcano, Kamchatka, Russia, as revealed by the physical properties of ice cores and borehole thermometry. Journ. of Glaciology. 2001, 47 (158): 423–432. https://doi.org/10.3189/172756501781832061
  42. Sinnl G., Winstrup M., Erhardt T., Cook E., Jensen C. M., Svensson A., Vinther B. M., Muscheler R., Rasmussen S. O. A multi-ice-core, annual-layer-counted Greenland ice-core chronology for the last 3800 years: GICC21. Climate of the Past. 2022, 18 (5): 1125–1150. https://doi.org/10.5194/cp-18-1125-2022.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Ushkovsky volcano surrounded by the largest volcanoes of the Kliuchevskoi group, view from the southeast in August, 2023. Photo by V. I. Frolov. The inset shows the regional position of the volcano.

Download (323KB)
3. Fig. 2. Examples of ash particles completely (а–в) or partially (г) composed of volcanic glass: а — pumice particle from the soil profile in the area of Zhupanovsky volcano, Kamchatka; б — enlarged fragment of pumice; в-glass shard from the tephra from Kliuchevskoi volcano; г — glassy particle with microlites of pyroxenes and plagioclase, Kliuchevskoi volcano. Images are shown in the back-scattered electron mode: Cpx — clinopyroxene; Pl — plagioclase; Gl — glass.

Download (384KB)
4. Fig. 3. Examples of ash layers buried in the Ushkovsky Glacier: а — fragment of ice core containing tephra at the depth 762–777 cm (sample Ush 762–777); б — fragment of ice core containing tephra at the depth 828–834 cm (sample Ush 828–834); в — ash particles from the Ush 762–777 sample; г — glassy, highly porous ash particle from the Ush 762–777 sample with a phenocryst of orthopyroxene (Opx), glass composition (Gl) corresponds to the products of eruptions of the Bezymyannyi volcano; д — ash particles from the Ush 828–834 sample; е — glassy ash particles from the Ush 828–834 sample with microlites of pyroxenes, plagioclase and olivine, Kliuchevskoi volcano.

Download (1001KB)
5. Fig. 4. Volcanic glass compositions from the ice core tephras on the SiO2–Na2O+K2O classification diagram (Le Bas et al., 1986) (а) and on the diagrams of variations of sodium (б) and potassium (в) oxide contents in relation to the silicа content: 1 — points of glass compositions of all studied samples; 2 — points of glass compositions from sample Ush 762–777 with mixed population of particles from eruptions of Kizimen, Kliuchevskoi and Bezymyannyi volcanoes; 3 — points of glass compositions from sample Ush 348–354 with mixed population of particles of ash from Kliuchevskoi and Shiveluch volcanoes. The fields of glass compositions of products of modern volcanic eruptions in Kamchatka are shown in different colours based on data from (Ponomareva et al., 2012; Gorbach et al., 2016; 2022; Portnyagin et al., 2020; Davydova et al., 2022).

Download (286KB)
6. Fig. 5. Distribution of individual tephra horizons in the ice core section. Ash particles from different volcanoes are shown in different colours. The time of ash deposition is explained in the text. The inset shows the volcanoes whose tephras buried in the upper horizons of Ushkovsky Glacier.

Download (429KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies