МикроРНК как значимые биомаркеры атеросклеротической цереброваскулярной патологии

Обложка

Цитировать

Полный текст

Аннотация

Введение. Каротидный атеросклероз (КА) является одной из главных причин ишемических нарушений мозгового кровообращения. МикроРНК — относительно новая группа биомаркеров, часть из которых ассоциирована с процессами атерогенеза.

Цель исследования — оценка экспрессии ряда микроРНК у пациентов с цереброваскулярной патологией (ЦВП) в зависимости от выраженности КА.

Материалы и методы. В исследование были включены 50 человек (медиана возраста 66 [61; 71] лет, 58% из них — мужчины) с ЦВП на фоне КА. Пациенты были разделены на две группы: у 16 пациентов (32%) стеноз внутренней сонной артерии (ВСА) составил 70% и более (основная группа), остальные 34 пациента со стенозом <70% вошли в группу сравнения. Определяли экспрессию следующих микроРНК: miR-126-5p, miR-126-3p, miR-29-5p, miR-29-3p, miR-33a-5p, miR-33a-3p, miR-21-5p, miR-21-3p.

Результаты. У пациентов с КА высоких градаций по сравнению с группой сравнения была снижена экcпрессия miR-126-5p/-3p (4,8 и 5,9 vs. 8,5 и 7,6 соответственно; p < 0,001), miR-29-3p (7,6 vs. 10,3; p < 0,001) и повышена — miR-33a-5p (46,3 vs. 40,0; p < 0,05). Кластерный анализ подтвердил характерные паттерны экспрессии указанных микроРНК у пациентов с разной степенью поражения ВСА. Также определены значимые отрицательные корреляции между степенью стеноза и экспрессией miR-126-5p (ρ = –0,83; р < 0,05), miR-126-3p (ρ = –0,64; р < 0,05) и miR-29-3p (ρ = –0,62; р < 0,05).

Заключение. На основании анализа пациентов с атеросклеротической ЦВП представляется возможным разделить исследованные микроРНК на условно проатерогенные (miR-33a-5p/-3p) и атеропротективные (miR-126-5p/-3p, miR-29-3p, mir-21-5p/-3p). Указанные биомаркеры могут представлять диагностическую значимость в отношении предикции риска как прогрессирования КА, так и развития острых нарушений мозгового кровообращения, однако необходимы проспективные исследования.

Об авторах

Антон Алексеевич Раскуражев

ФГБНУ «Научный центр неврологии»

Автор, ответственный за переписку.
Email: rasckey@live.com
ORCID iD: 0000-0003-0522-767X

к.м.н., врач-невролог, с.н.с. 1-го неврологического отделения

Россия, Москва

Алла Анатольевна Шабалина

ФГБНУ «Научный центр неврологии»

Email: ashabalina@yandex.ru
ORCID iD: 0000-0001-9604-7775

д.м.н., в.н.с., рук. лаб. гемореологии, гемостаза и фармакокинетики (с клинической лабораторной диагностикой)

Россия, Москва

Полина Игоревна Кузнецова

ФГБНУ «Научный центр неврологии»

Email: angioneurology0@gmail.com
ORCID iD: 0000-0002-4626-6520

к.м.н., врач-невролог, н.с. 1-го неврологического отделения

Россия, Москва

Маринэ Мовсесовна Танашян

ФГБНУ «Научный центр неврологии»

Email: M_Tanashyan2004@mail.ru
ORCID iD: 0000-0002-5883-8119

д.м.н., профессор, член-корреспондент РАН, зам. директора по научной работе, рук. 1-го неврологического отделения

Россия, Москва

Список литературы

  1. Song P., Fang Z., Wang H. et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health. 2020;8(5):e721–e729. doi: 10.1016/S2214-109X(20)30117-0. PMID: 32353319.
  2. Wu M.Y., Li C.J., Hou M.F., Chu P.Y. New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int J Mol Sci. 2017;18(10):2034. doi: 10.3390/ijms18102034. PMID: 28937652.
  3. Танашян М.М., Раскуражев А.А., Шабалина А.А. и др. Биомаркеры церебрального атеросклероза: возможности ранней диагностики и прогнозирования индивидуального риска. Анналы клинической и экспериментальной неврологии. 2015;9(3):20–25.
  4. Танашян М.М., Раскуражев А.А., Шабалина А.А., Лагода О.В. Патент № 2592237 от 2016 г. Способ диагностики течения «асимптомного» каротидного атеросклероза.
  5. Раскуражев А.А., Танашян М.М. Роль микроРНК в цереброваскулярной патологии. Анналы клинической и экспериментальной неврологии. 2019;13(3):41–46. doi: 10.25692/ACEN.2019.3.6.
  6. Tajbakhsh A., Bianconi V., Pirro M. et al. Efferocytosis and atherosclerosis: regulation of phagocyte function by MicroRNAs. Trends Endocrinol. Metab. 2019;30(9):672–683. doi: 10.1016/j.tem.2019.07.006. PMID: 31383556.
  7. Raskurazhev A.A., Tanashyan M.M., Shabalina A.A. et al. Micro-RNA in patients with carotid atherosclerosis. Hum Physiol. 2020;46:880–885. doi: 10.1134/S0362119720080113.
  8. Howard D.P.J., Gaziano L., Rothwell P.M., Oxford Vascular Study. Risk of stroke in relation to degree of asymptomatic carotid stenosis: a population-based cohort study, systematic review, and meta-analysis. Lancet Neurol. 2021;20(3):193-202. doi: 10.1016/S1474-4422(20)30484-1. PMID: 33609477.
  9. Kim S.H., Kim G.J., Umemura T. et al. Aberrant expression of plasma microRNA-33a in an atherosclerosis-risk group. Mol Biol Rep. 2017;44(1):79–88. doi: 10.1007/s11033-016-4082-z. PMID: 27664032.
  10. Marquart T.J., Allen R.M., Ory D.S., Baldán A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010;107(27):12228–32. doi: 10.1073/pnas.1005191107. PMID: 20566875.
  11. Horie T., Baba O., Kuwabara Y. et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J Am Heart Assoc. 2012;1(6):e003376. doi: 10.1161/JAHA.112.003376. PMID: 23316322.
  12. Kim J., Yoon H., Horie T. et al. microRNA-33 Regulates ApoE lipidation and amyloid-β metabolism in the brain. J Neurosci. 2015;35(44):14717-26. doi: 10.1523/JNEUROSCI.2053-15.2015. PMID: 26538644.
  13. Bretschneider M., Busch B., Mueller D. et al. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells. FASEB J. 2016;30(4):1610–1622. doi: 10.1096/fj.15-271254. PMID: 26728178.
  14. Silambarasan M., Tan J.R., Karolina D.S. et al. MicroRNAs in hyperglycemia induced endothelial cell dysfunction. Int J Mol Sci. 2016;17(4):518. doi: 10.3390/ijms17040518. PMID: 27070575.
  15. Huang Y., Li J., Chen J. et al. The association of circulating MiR-29b and interleukin-6 with subclinical atherosclerosis. Cell Physiol Biochem. 2017;44:1537–1544. doi: 10.1159/000485649. PMID: 29197872.
  16. Ulrich V., Rotllan N., Araldi E. et al. Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice. EMBO Mol Med. 2016;8(6):643–653. doi: 10.15252/emmm.201506031. PMID: 27137489.
  17. Deng X., Chu X., Wang P. et al. MicroRNA-29a-3p reduces TNFα-induced endothelial dysfunction by targeting tumor necrosis factor receptor 1. Mol Ther Nucleic Acids. 2019;18:903–915. doi: 10.1016/j.omtn.2019.10.014. PMID: 31760375.
  18. Yu B., Jiang Y., Wang X., Wang S. An integrated hypothesis for miR-126 in vascular disease. Med Res Arch. 2020;8(5):2133. doi: 10.18103/mra.v8i5.2133. PMID: 34222652.
  19. Harris T.A., Yamakuchi M., Ferlito M. et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105(5):1516–1521. doi: 10.1073/pnas.0707493105. PMID: 18227515.
  20. Canfrán-Duque A., Rotllan N., Zhang X. et al. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Mol Med. 2017;9(9):1244–1262. doi: 10.15252/emmm.201607492. PMID: 28674080.
  21. Jin H., Li D.Y., Chernogubova E. et al. Local Delivery of miR-21 Stabilizes Fibrous caps in vulnerable atherosclerotic lesions. Mol Ther. 2018;26(4):1040–1055. doi: 10.1016/j.ymthe.2018.01.011. PMID: 29503197.
  22. Cengiz M., Yavuzer S., Kılıçkıran Avcı B. et al. Circulating miR-21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clin Exp Hypertens. 2015;37(8):643–649. doi: 10.3109/10641963.2015.1036064. PMID: 26114349.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Уровень лейкоцитарной экспрессии микроРНК у пациентов в зависимости от степени каротидного стеноза (представлен в виде совмещенного violin plot [распределение данных и плотность вероятности] и box-plot [прямоугольник — межквартильный интервал, горизонтальная линия — медиана, вертикальные линии — разброс]).

Скачать (180KB)
3. Рис. 2. Тепловая карта относительной экспрессии микроРНК. Синяя гамма отражает более низкие уровни экспрессии, жёлтая — более высокие, столбец «Стеноз» — распределение пациентов по степени каротидного стеноза (более тёмный цвет — стеноз 70% и более). Представленные дендрограммы отражают процесс иерархической кластеризации.

Скачать (118KB)
4. Рис. 3. Корреляционный анализ. В ячейках указаны коэффициенты ранговой корреляции Спирмена (ρ), цвет ячейки зависит от направления (синий оттенок — отрицательная, жёлтый — положительная, зелёный — близкие к 0) взаимосвязи, а также её выраженности (интенсивность соответствующего оттенка). Зачёркнуты незначимые корреляции (p > 0,05).

Скачать (197KB)

© Раскуражев А.А., Шабалина А.А., Кузнецова П.И., Танашян М.М., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах