Metabolic manifestations of Parkinson’s disease in cell models derived from induced pluripotent stem cells

Cover Page

Cite item

Abstract

Induced pluripotent stem cell (iPSC)-based models represent an innovative approach to studying the pathogenesis of inherited Parkinson’s disease (PD) at molecular and cellular levels. The ability to derive neurons, astrocytes, and microglia carrying SNCA gene mutations from iPSCs significantly advances our understanding of key metabolic disturbances in PD. Each specific type of SNCA gene mutation (A53T, A30P, triplications, duplications, etc.) exhibits individual effects on functional and biochemical characteristics of differentiated cells. These differences involve synaptogenesis, extramitochondrial oxygen consumption, and protein metabolism. The diversity of effects makes critical the selection of strictly defined iPSC lines depending on research objectives. The aim of this review is to examine metabolic features of brain cells derived from iPSCs with inherited PD associated with SNCA mutations, as well as the potential of using iPSCs to develop personalized in vitro models for understanding disease mechanisms. This approach will facilitate identification of new therapeutic targets and refinement of existing technologies for diagnosis and targeted therapy.

About the authors

Nataliya A. Kolotyeva

Russian Center of Neurology and Neurosciences

Author for correspondence.
Email: kolotyeva.n.a@neurology.ru
ORCID iD: 0000-0002-7853-6222

Dr. Sci. (Med.), Associate Professor, Head, Laboratory of experimental and translational neurochemistry, Brain Institute

Russian Federation, Moscow

Regina S. Mudarisova

Russian Center of Neurology and Neurosciences

Email: mudarisova.regina@bk.ru
ORCID iD: 0009-0008-8522-309X

postgraduate student, laboratory assistant, Laboratory of experimental and translational neurochemistry, Brain Institute

Russian Federation, Moscow

Natalia A. Rozanova

Russian Center of Neurology and Neurosciences

Email: nataliarozanovaa@gmail.com
ORCID iD: 0000-0001-9619-4679

postgraduate student, researcher, Laboratory of experimental and translational neurochemistry, Brain Institute

Russian Federation, Moscow

Arseniy K. Berdnikov

Russian Center of Neurology and Neurosciences

Email: akberdnikov@gmail.com
ORCID iD: 0009-0007-4195-2533

postgraduate student, laboratory assistant, Laboratory of experimental and translational neurochemistry, Brain Institute

Russian Federation, Moscow

Svetlana V. Novikova

Russian Center of Neurology and Neurosciences

Email: levik_82@mail.ru
ORCID iD: 0009-0008-3905-1928

graduate student, Laboratory of experimental and translational neurochemistry, Brain Institute

Russian Federation, Moscow

Yulia K. Komleva

Russian Center of Neurology and Neurosciences

Email: yuliakomleva@mail.ru
ORCID iD: 0000-0001-5742-8356

Dr. Sci. (Med.), Associate Professor, senior researcher, Laboratory of experimental and translational neurochemistry, Brain Institute

Russian Federation, Moscow

References

  1. Müller-Nedebock AC, Dekker MCJ, Farrer MJ, et al. Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson’s disease. NPJ Parkinsons Dis. 2023;9(1):110. doi: 10.1038/s41531-023-00535-8
  2. Cherian A, Divya KP. Genetics of Parkinson’s disease. Acta Neurol Belg. 2020;120(6):1297–1305. doi: 10.1007/s13760-020-01473-5
  3. Zanon A, Pramstaller PP, Hicks AA, Pichler I. Environmental and genetic variables influencing mitochondrial health and Parkinson’s disease penetrance. Parkinsons Dis. 2018;2018:8684906. doi: 10.1155/2018/8684906
  4. Ferrari E, Cardinale A, Picconi B, Gardoni F. From cell lines to pluripotent stem cells for modelling Parkinson’s Disease. J Neurosci Methods. 2020;340:108741. doi: 10.1016/j.jneumeth.2020.108741
  5. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917– 1920. doi: 10.1126/science.1151526
  6. Huang Y, Tan S. Direct lineage conversion of astrocytes to induced neural stem cells or neurons. Neurosci Bull. 2015;31(3):357–367. doi: 10.1007/s12264-014-1517-1
  7. Pankratz N, Foroud T. Genetics of Parkinson disease. Genet Med. 2007;9(12):801–811. doi: 10.1097/gim.0b013e31815bf97c
  8. Henrich MT, Oertel WH, Surmeier DJ, Geibl FF. Mitochondrial dysfunction in Parkinson’s disease — a key disease hallmark with therapeutic potential. Mol Neurodegener. 2023;18(1):83. doi: 10.1186/s13024-023-00676-7
  9. Белова О.В., Арефьева Т.И., Москвина С.Н. Иммуновоспалительные аспекты болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020;120(2):110–119
  10. Kuo G, Kumbhar R, Blair W, et al. Emerging targets of α-synuclein spreading in α-synucleinopathies: a review of mechanistic pathways and interventions. Mol Neurodegener. 2025;20(1):10. doi: 10.1186/s13024-025-00797-1
  11. Pozdyshev DV, Leisi EV, Muronetz VI, et al. Cytotoxicity of α-synuclein amyloid fibrils generated with phage chaperonin OBP. Biochem Biophys Res Commun. 2025;742:151127. doi: 10.1016/j.bbrc.2024.151127
  12. Zohoorian-Abootorabi T, Meratan AA, Jafarkhani S, et al. Modulation of cytotoxic amyloid fibrillation and mitochondrial damage of α-synuclein by catechols mediated conformational changes. Sci Rep. 2023;13(1):5275. doi: 10.1038/s41598-023-32075-9
  13. Muronetz VI, Kudryavtseva SS, Leisi EV, et al. Regulation by different types of chaperones of amyloid transformation of proteins involved in the development of neurodegenerative diseases. Int J Mol Sci. 2022;23(5):2747. doi: 10.3390/ijms23052747
  14. Salmina AB. Metabolic plasticity in developing and aging brain. Neurochemical Journal. 2023;17(3):325–337. doi: 10.1134/S1819712423030157
  15. Salmina AB, Gorina YV, Komleva YK, et al. Early life stress and metabolic plasticity of brain cells: impact on neurogenesis and angiogenesis. Biomedicines. 2021;9(9):1092. doi: 10.3390/biomedicines9091092
  16. Takahashi S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology. 2020;40(2):121–137. doi: 10.1111/neup.12639
  17. Van Steenbergen V, Lavoie-Cardinal F, Kazwiny Y, et al. Nano-positioning and tubulin conformation contribute to axonal transport regulation of mitochondria along microtubules. Proc Natl Acad Sci U S A. 2022;119(45):e2203499119. doi: 10.1073/pnas.2203499119
  18. Karagiannis A, Gallopin T, Lacroix A, et al. Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity. Elife. 2021;10:e71424. doi: 10.7554/eLife.71424
  19. Selivanov VA, Zagubnaya OA, Nartsissov YR, Cascante M. Unveiling a key role of oxaloacetate-glutamate interaction in regulation of respiration and ROS generation in nonsynaptic brain mitochondria using a kinetic model. PLoS One. 2021;16(8):e0255164. doi: 10.1371/journal.pone.0255164
  20. Morant-Ferrando B, Jimenez-Blasco D, Alonso-Batan P, et al. Fatty acid oxidation organizes mitochondrial supercomplexes to sustain astrocytic ROS and cognition. Nat Metab. 2023;5(8):1290–1302. doi: 10.1038/s42255-023-00835-6
  21. Komatsuzaki S, Ediga RD, Okun JG, et al. Impairment of astrocytic glutaminolysis in glutaric aciduria type I. J Inherit Metab Dis. 2018;41(1):91–99. doi: 10.1007/s10545-017-0096-5
  22. de Tredern E, Rabah Y, Pasquer L, et al. Glial glucose fuels the neuronal pentose phosphate pathway for long-term memory. Cell Rep. 2021;36(8):109620. doi: 10.1016/j.celrep.2021.109620
  23. Mishra A, Gordon GR, MacVicar BA, Newman EA. Astrocyte regulation of cerebral blood flow in health and disease. Cold Spring Harb Perspect Biol. 2024;16(4):a041354. doi: 10.1101/cshperspect.a041354
  24. Salmina AB, Kuvacheva NV, Morgun AV, et al. Glycolysis-mediated control of blood-brain barrier development and function. Int J Biochem Cell Biol. 2015;64:174–184. doi: 10.1016/j.biocel.2015.04.005
  25. Veys K, Fan Z, Ghobrial M, et al. Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ Res. 2020;127(4):466–482. doi: 10.1161/CIRCRESAHA.119.316463
  26. Cheng J, Zhang R, Xu Z, et al. Early glycolytic reprogramming controls microglial inflammatory activation. J Neuroinflammation. 2021;18(1):129. doi: 10.1186/s12974-021-02187-y
  27. Bielanin JP, Sun D. Significance of microglial energy metabolism in maintaining brain homeostasis. Transl Stroke Res. 2023;14(4):435–437. doi: 10.1007/s12975-022-01069-6
  28. Bernier LP, York EM, Kamyabi A, et al. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun. 2020;11(1):1559. doi: 10.1038/s41467-020-15267-z
  29. Benarroch E. What are the roles of pericytes in the neurovascular unit and its disorders? Neurology. 2023;100(20):970–977. doi: 10.1212/WNL.000000000020737
  30. Liu LR, Liu JC, Bao JS, et al. Interaction of microglia and astrocytes in the neurovascular unit. Front Immunol. 2020;11:1024. doi: 10.3389/fimmu.2020.01024
  31. Ioghen O, Chițoiu L, Gherghiceanu M, et al. CD36 — a novel molecular target in the neurovascular unit. Eur J Neurosci. 2021;53(8):2500–2510. doi: 10.1111/ejn.15147
  32. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–2047. doi: 10.1126/science.276.5321.2045
  33. Deas E, Cremades N, Angelova PR, et al. Alpha-Synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid Redox Signal. 2016;24(7):376–391. doi: 10.1089/ars.2015.6343
  34. Zarranz JJ, Alegre J, Gómez-Esteban JC, et al.The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55(2):164–173. doi: 10.1002/ana.10795.
  35. Lesage S, Anheim M, Letournel F, et al. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol. 2013;73(4):459–471. doi: 10.1002/ana.23894
  36. Pasanen P, Myllykangas L, Siitonen M, et al. Novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging. 2014;35(9):2180.e1-5. doi: 10.1016/j.neurobiolaging.2014.03.024
  37. Ibáñez P, Bonnet AM, Débarges B, et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet. 2004;364(9440):1169–1171. doi: 10.1016/S0140-6736(04)17104-3
  38. Mouroux V, Douay X, Lincoln S, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet. 2004;364(9440):1167– 1169. doi: 10.1016/S0140-6736(04)17103-1
  39. Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science. 2003;302(5646):841. doi: 10.1126/science.1090278
  40. Ferese R, Modugno N, Campopiano R, et al. Four copies of SNCA responsible for autosomal dominant Parkinson’s disease in two Italian siblings. Parkinsons Dis. 2015;2015:546462. doi: 10.1155/2015/546462
  41. Devine MJ, Ryten M, Vodicka P, et al. Parkinson’s disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nat Commun. 2011;2:440. doi: 10.1038/ncomms1453
  42. Suzuki H, Egawa N, Imamura K, et al. Mutant α-synuclein causes death of human cortical neurons via ERK1/2 and JNK activation. Mol Brain. 2024;17(1):14. doi: 10.1186/s13041-024-01086-6
  43. Fernandes HJR, Patikas N, Foskolou S, et al. Single-cell transcriptomics of Parkinson’s disease human in vitro models reveals dopamine neuron-specific stress responses. Cell Rep. 2020;33(2):108263. doi: 10.1016/j.celrep.2020
  44. Vetchinova AS, Kapkaeva MR, Ivanov MV, et al. Mitochondrial dysfunction in dopaminergic neurons derived from patients with LRRK2- and SNCA-associated genetic forms of Parkinson’s disease. Curr Issues Mol Biol. 2023;45(10):8395–8411. doi: 10.3390/cimb45100529
  45. Krzisch M, Yuan B, Chen W, et al. The A53T mutation in α-synuclein enhances proinflammatory activation in human microglia upon inflammatory stimulus. Biol Psychiatry. 2025;97(7):730–742. doi: 10.1016/j.biopsych.2024.07.011
  46. Oliveira LM, Falomir-Lockhart LJ, Botelho MG, et al. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson’s patient-derived induced pluripotent stem cells. Cell Death Dis. 2015;6(11):e1994. doi: 10.1038/cddis.2015.318
  47. Kouroupi G, Taoufik E, Vlachos IS, et al. Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson’s disease. Proc Natl Acad Sci U S A. 2017;114(18):E3679– E3688. doi: 10.1073/pnas.1617259114
  48. Nordengen K, Morland C. From Synaptic physiology to synaptic pathology: the enigma of α-Synuclein. Int J Mol Sci. 2024;25(2):986. doi: 10.3390/ijms25020986
  49. Zambon F, Cherubini M, Fernandes HJR, et al. Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson’s iPSC-derived dopamine neurons. Hum Mol Genet. 2019;28(12):2001– 2013. doi: 10.1093/hmg/ddz038
  50. Diao X, Wang F, Becerra-Calixto A, et al. Induced pluripotent stem cell-derived dopaminergic neurons from familial Parkinson’s disease patients display α-synuclein pathology and abnormal mitochondrial morphology. Cells. 2021;10(9):2402. doi: 10.3390/cells10092402
  51. Iannielli A, Luoni M, Giannelli SG, et al. Modeling native and seeded Synuclein aggregation and related cellular dysfunctions in dopaminergic neurons derived by a new set of isogenic iPSC lines with SNCA multiplications. Cell Death Dis. 2022;13(10):881. doi: 10.1038/s41419-022-05330-6
  52. Barbuti PA, Antony PMA, Novak G, et al. IPSC-derived midbrain astrocytes from Parkinson’s disease patients carrying pathogenic SNCA mutations exhibit alpha-synuclein aggregation, mitochondrial fragmentation and excess calcium release: preprint. 2020. doi: 10.1101/2020.04.27.053470
  53. Heman-Ackah SM, Manzano R, Hoozemans JJM, et al. Alpha-synuclein induces the unfolded protein response in Parkinson’s disease SNCA triplication iPSC-derived neurons. Hum Mol Genet. 2017;26(22):4441– 4450. doi: 10.1093/hmg/ddx331
  54. Chung CY, Khurana V, Auluck PK, et al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science. 2013;342(6161):983–987. doi: 10.1126/science.1245296
  55. Stojkovska I, Wani WY, Zunke F, et al. Rescue of α-synuclein aggregation in Parkinson’s patient neurons by synergistic enhancement of ER proteostasis and protein trafficking. Neuron. 2022;110(3):436–451.e11. doi: 10.1016/j.neuron.2021.10.032
  56. Zigoneanu IG, Yang YJ, Krois AS, et al. Interaction of α-synuclein with vesicles that mimic mitochondrial membranes. Biochim Biophys Acta. 2012;1818(3):512–519. doi: 10.1016/j.bbamem.2011.11.024
  57. Diao J, Burré J, Vivona S, et al. Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Elife. 2013;2:e00592. doi: 10.7554/eLife.00592
  58. Li W, Lesuisse C, Xu Y, et al. Stabilization of alpha-synuclein protein with aging and familial parkinson’s disease-linked A53T mutation. J Neurosci. 2004;24(33):7400–7409. doi: 10.1523/JNEUROSCI.1370-04.2004
  59. Ohgita T, Namba N, Kono H, et al. Mechanisms of enhanced aggregation and fibril formation of Parkinson’s disease-related variants of α-synuclein. Sci Rep. 2022;12(1):6770. doi: 10.1038/s41598-022-10789-6
  60. Tang Q, Gao P, Arzberger T, et al. Alpha-synuclein defects autophagy by impairing SNAP29-mediated autophagosome-lysosome fusion. Cell Death Dis. 2021;12(10):854. doi: 10.1038/s41419-021-04138-0
  61. Ludtmann MHR, Angelova PR, Horrocks MH, et al. α-Synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun. 2018;9(1):2293. doi: 10.1038/s41467-018-04422-2
  62. Byers B, Cord B, Nguyen HN, et al. SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate α-synuclein and are susceptible to oxidative stress. PLoS One. 2011;6(11):e26159. doi: 10.1371/journal.pone.0026159
  63. Little D, Luft C, Mosaku O, et al. A single cell high content assay detects mitochondrial dysfunction in iPSC-derived neurons with mutations in SNCA. Sci Rep. 2018;8(1):9033. doi: 10.1038/s41598-018-27058-0
  64. Dettmer U, Newman AJ, Soldner F, et al. Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat Commun. 2015;6:7314. doi: 10.1038/ncomms8314
  65. Khurana V, Peng J, Chung CY, et al. Genome-scale networks link neuro- degenerative disease genes to α-synuclein through specific molecular pathways. Cell Syst. 2017;4(2):157–170.e14. doi: 10.1016/j.cels.2016.12.011

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kolotyeva N.A., Mudarisova R.S., Rozanova N.A., Berdnikov A.K., Novikova S.V., Komleva Y.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».