Роль интерлейкина-6 в развитии сердечно-сосудистых заболеваний

Обложка

Цитировать

Полный текст

Аннотация

В настоящее время продолжаются поиск и изучение новых биологических маркеров, способных обеспечить раннюю диагностику сердечно-сосудистых заболеваний, служить лабораторным инструментом оценки эффективности проводимого лечения или использоваться в качестве прогностических маркеров и критериев стратификации риска. Представленный нами литературный обзор указывает на потенциально важную диагностическую и прогностическую значимость оценки членов семейства интерлейкина-6. Ожидается, что дальнейшие научно-клинические исследования продемонстрируют возможности использования членов семейства интерлейкина-6 в качестве дополнительного лабораторного инструмента для диагностики, стратификации риска и прогнозирования сердечно-сосудистых катастроф у пациентов кардиологического профиля. Предстоит детально оценить возможности блокады данных молекул группы интерлейкина-6 у пациентов с сердечно-сосудистыми заболеваниями in vitro и in vivo.

Об авторах

Амина Магомедовна Алиева

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Автор, ответственный за переписку.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN-код: 2749-6427

канд. мед. наук, доц. каф. госпитальной терапии №2 лечебного фак-та ФГАОУ ВО «РНИМУ им. Н.И. Пирогова»

Россия, Москва

Алексей Владимирович Бутенко

ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского»

Email: amisha_alieva@mail.ru

д-р мед. наук, проф., глав. врач Научно-клинического центра №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского»

Россия, Москва

Наталья Вадимовна Теплова

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Email: amisha_alieva@mail.ru
ORCID iD: 0000-0002-7181-4680

д-р мед. наук, проф., зав. каф. клинической фармакологии лечебного фак-та ФГАОУ ВО «РНИМУ им. Н.И. Пирогова»

Россия, Москва

Елена Владимировна Резник

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Email: elenaresnik@gmail.com
ORCID iD: 0000-0001-7479-418X
SPIN-код: 3494-9080
ResearcherId: N-6856-2016

д-р мед. наук, проф., зав. каф. пропедевтики внутренних болезней лечебного фак-та ФГАОУ ВО «РНИМУ им. Н.И. Пирогова»

Россия, Москва

Рамиз Камраддинович Валиев

ГБУЗ «Московский клинический научно-практический центр им. А.С. Логинова» Департамента здравоохранения г. Москвы

Email: radiosurgery@bk.ru
ORCID iD: 0000-0003-1613-3716
SPIN-код: 2855-2867

канд. мед. наук, зав. онкохирургическим отд-нием №2 ГБУЗ «МКНЦ им. А.С. Логинова»

Россия, Москва

Элина Альбертовна Скрипниченко

ГБУЗ «Московский клинический научно-практический центр им. А.С. Логинова» Департамента здравоохранения г. Москвы

Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-6321-8419

аспирант каф. госпитальной терапии №2 лечебного фак-та ФГАОУ ВО «РНИМУ им. Н.И. Пирогова»

Россия, Москва

Алексей Викторович Созыкин

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России; ФГБНУ «Российский научный центр хирургии им. акад. Б.В. Петровского»

Email: amisha_alieva@mail.ru

д-р мед. наук, проф. каф. кардиологии фак-та ДПО ФГАОУ ВО «РНИМУ им. Н.И. Пирогова»; зав. отд-нием рентгенохирургических методов диагностики и лечения ФГБНУ «РНЦХ им. акад. Б.В. Петровского»

Россия, Москва; Москва

Игорь Геннадиевич Никитин

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России

Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881

д-р мед. наук, проф., зав. каф. госпитальной терапии №2 лечебного фак-та ФГАОУ ВО «РНИМУ им. Н.И. Пирогова»

Россия, Москва

Список литературы

  1. Feng Y, Ye D, Wang Z, et al. The role of interleukin-6 family members in cardiovascular diseases. Front Cardiovasc Med. 2022;9:818890. doi: 10.3389/fcvm.2022.818890
  2. Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1-25. doi: 10.1016/j.jacc.2017.04.052
  3. Алиева А.М., Резник Е.В., Гасанова Э.Т., и др. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью. Архивъ внутренней медицины. 2018;8(5):333-45 [Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333-45 (in Russian)]. doi: 10.20514/2226-6704-2018-8-5-333-345
  4. Алиева А.М., Байкова И.Е., Кисляков В.А., и др. Галектин-3: диагностическая и прогностическая ценность определения у пациентов с хронической сердечной недостаточностью. Терапевтический архив. 2019;91(9):145-9 [Alieva AM, Baikova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(9):145-9 (in Russian)]. doi: 10.26442/00403660.2019.09.000226
  5. Hirano T, Taga T, Nakano N, et al. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Nat Acad Sci USA. 1985;82:5490-4.
  6. Somers W, Stahl M, Seehra JS. A crystal structure of Interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO J. 1997;16:989-97.
  7. Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nature reviews. Immunology. 2018;18:773-89. doi: 10.1038/s41577-018-0066-7
  8. Modares NF, Polz R, Haghighi F, et al. IL-6 trans-signaling controls liver regeneration after partial hepatectomy. Hepatology (Baltimore, Md.). 2019;70:2075-91. doi: 10.1002/hep.30774
  9. Zegeye MM, Lindkvist M, Fälker K, et al. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun Signal. 2018;16:55. doi: 10.1186/s12964-018-0268-4
  10. Quintana FJ. Old dog, new tricks: IL-6 cluster signaling promotes pathogenic T17 cell differentiation. Nature Immunology. 2016;18(1):8-10. doi: 10.1038/ni.3637
  11. Xu DH, Zhu Z, Wakefield MR, et al. The role of IL-11 in immunity and cancer. Cancer letters. 2016;373:156-63. doi: 10.1016/j.canlet.2016.01.004
  12. Metcalfe RD, Putoczki TL, Griffin MDW. Structural understanding of interleukin 6 family cytokine signaling and targeted therapies: focus on interleukin 11. Front Immunol. 2020;11:1424. doi: 10.3389/fimmu.2020.01424
  13. Kourko O, Seaver K, Odoardi N, et al. IL-27, IL-30 and IL-35: a cytokine triumvirate in cancer. Front Oncology. 2019;9:969. doi: 10.3389/fonc.2019.00969
  14. Murdaca G, Greco M, Tonacci A, et al. IL-33/IL-31 axis in immune-mediated and allergic diseases. Int J Mol Sci. 2019;20(23). doi: 10.3390/ijms20235856
  15. Nakashima C, Otsuka A, Kabashima K. Interleukin-31 and interleukin-31 receptor: New therapeutic targets for atopic dermatitis. Exp Dermatol. 2018;27:327-31. doi: 10.1111/exd.13533
  16. Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN Inflammation. 2013;2013:512103. doi: 10.1155/2013/512103
  17. Jung ID, Noh KT, Lee CM, et al. Oncostatin M induces dendritic cell maturation and Th1 polarization. Biochem Biophys Res Commun. 2010;394:272-8. doi: 10.1016/j.bbrc.2010.02.153
  18. Fantone S, Tossetta G, Montironi R, et al. Ciliary neurotrophic factor (CNTF) and its receptor (CNTFRα) signal through MAPK/ERK pathway in human prostate tissues: a morphological and biomolecular study. Eur J Histochemi: EJH. 2020;64(4):3147. doi: 10.4081/ejh.2020.3147
  19. Larsen JV, Kristensen AM, Pallesen LT, et al. Cytokine-like factor 1, an essential facilitator of cardiotrophin-like cytokine:ciliary neurotrophic factor receptor α signaling and sorLA-Mediated turnover. Mol Cellular Biol. 2016;36:1272-86. doi: 10.1128/MCB.00917-15
  20. Москаленко С.А., Шувалова Ю.А., Каминный А.И. Роль системы интерлейкина-6 в развитии атеросклероза. Атеросклероз и дислипидемии. 2020;2(39):5-11 [Moskalenko SA, Shuvalova YA, Kaminnyi AI. The role of the Interleukin-6 system in the development of atherosclerosis. Ateroskleroz i Dislipidemii. 2020;2(39):5-11 (in Russian)]. doi: 10.34687/2219–8202.JAD.2020.02.0001
  21. Тополянская С.В. Роль интерлейкина 6 при старении и возраст-ассоциированных заболеваниях. Клиницист. 2020;14(3-4):К633 [Topolyanskaya SV. Interleukin 6 in aging and age-related diseases. Klinitsist. 2020;14(3-4):К633 (in Russian)]. doi: 10.17650/1818-8338-2020-14-3-4-К633
  22. Ertuglu LA, Elijovich F, Laffer CL, Kirabo A. Salt-Sensitivity of Blood Pressure and Insulin Resistance. Front Physiol. 2021:12:793924. doi: 10.3389/fphys.2021.793924
  23. Hashmat S, Rudemiller N, Lund H, et al. Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am J Physiol Renal Physiol. 2016:311:F555-61. doi: 10.1152/ajprenal.00594.2015
  24. Brands MW, Banes-Berceli AKL, Inscho EW, et al. Interleukin 6 knockout prevents angiotensin II hypertension: role of renal vasoconstriction and janus kinase 2/signal transducer and activator of transcription 3 activation. Hypertension. 2010:56(5):879-84. doi: 10.1161/HYPERTENSIONAHA.110.158071
  25. Nzelu D, Nicolaides KH, Kametas NA. First trimester angiogenic and inflammatory factors in women with chronic hypertension and impact of blood pressure control: a case-control study. BJOG. 2021;128(13):2171-9. doi: 10.1111/1471-0528.16835
  26. Mao SQ, Sun JH, Gu JL, et al. Hypomethylation of interleukin-6 (IL-6) gene increases the risk of essential hypertension: a matched case-control study. J Human Hypertension. 2017;31:530-6. doi: 10.1038/jhh.2017.7
  27. Gkaliagkousi E, Gavriilaki E, Nikolaidou B, et al. Association between cardiotrophin 1 levels and central blood pressure in untreated patients with essential hypertension. Am J Hypertension. 2014;27:651-5. doi: 10.1093/ajh/hpt238
  28. López B, Castellano JM, González A, et al. Association of increased plasma cardiotrophin-1 with inappropriate left ventricular mass in essential hypertension. Hypertension. 2007;50:977-83. doi: 10.1161/HYPERTENSIONAHA.107.098111
  29. Tuttolomondo A, Pecoraro R, Buttà C, et al. Arterial stiffness indexes and serum cytokine levels in seronegative spondyloarthritis: relationships between stiffness markers and metabolic and immunoinflammatory variables. Scand J Rheumatol. 2015;44:474-9. doi: 10.3109/03009742.2015.1030449
  30. Du B, Ouyang A, Eng JS, Fleenor BS. Aortic perivascular adipose-derived interleukin-6 contributes to arterial stiffness in low-density lipoprotein receptor deficient mice. Am J Physiol Heart Circ Physiol. 2015;308:H1382-90. doi: 10.1152/ajpheart.00712.2014
  31. Okazaki S, Sakaguchi M, Miwa K, et al. Association of interleukin-6 with the progression of carotid atherosclerosis: a 9-year follow-up study. Stroke. 2014;45:2924-9. doi: 10.1161/STROKEAHA.114.005991
  32. Kamtchum-Tatuene J, Saba L, Heldner MR, et al; Carotid Atherosclerosis and Stroke Collaboration (CASCO). Interleukin-6 predicts carotid plaque severity, vulnerability, and progression. Circ Res. 2022;131(2):e22-e33. doi: 10.1161/CIRCRESAHA.122.320877
  33. Groot HE, Al Ali L, van der Horst ICC, et al. Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin Res Cardiol. 2019;108:612-21. doi: 10.1007/s00392-018-1387-z
  34. Lindmark E, Diderholm E, Wallentin L, Siegbahn A. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA. 2001;286(17):2107-13. doi: 10.1001/jama.286.17.2107
  35. Fisman EZ, Benderly M, Esper RJ, et al. Interleukin-6 and the risk of future cardiovascular events in patients with angina pectoris and/or healed myocardial infarction. Am J Cardiology. 2006;98:14-8. doi: 10.1016/j.amjcard.2006.01.045
  36. Tøllefsen IM, Shetelig C, Seljeflot I, et al. High levels of interleukin-6 are associated with final infarct size and adverse clinical events in patients with STEMI. Open Heart. 2021;8(2):e001869. doi: 10.1136/openhrt-2021-001869
  37. Kleveland O, Kunszt G, Bratlie M, et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur Heart J. 2016;37(30):2406-13. doi: 10.1093/eurheartj/ehw171
  38. Gurzău D, Sitar-Tăut A, Caloian B, et al. The role of IL-6 and ET-1 in the diagnosis of coronary microvascular disease in women. J Pers Med. 2021;11(10):965. doi: 10.3390/jpm11100965
  39. Fernández-Ruiz I. Promising anti-IL-6 therapy for atherosclerosis. Nat Rev Cardiol. 2021;18(8):544. doi: 10.1038/s41569-021-00575-8
  40. Madan M, Bishayi B, Hoge M, Amar S. Atheroprotective role of interleukin-6 in diet- and/or pathogen-associated atherosclerosis using an ApoE heterozygote murine model. Atherosclerosis. 2008;197:504-14. doi: 10.1016/j.atherosclerosis.2007.02.023
  41. Liu C, Wu J, Jia H, et al. Oncostatin M promotes the ox-LDL-induced activation of NLRP3 inflammasomes via the NF-κB pathway in THP-1 macrophages and promotes the progression of atherosclerosis. Ann Transl Med. 2022;10(8):456. doi: 10.21037/atm-22-560
  42. Li X, Zhang X, Wei L, Xia Y, Guo X. Relationship between serum oncostatin M levels and degree of coronary stenosis in patients with coronary artery disease. Clinical Lab. 2014;60:113-8. doi: 10.7754/Clin.Lab.2013.121245
  43. van Keulen D, Pouwer MG, Emilsson V, et al. Oncostatin M reduces atherosclerosis development in APOE*3Leiden.CETP mice and is associated with increased survival probability in humans. PloS ONE. 2019;14: e0221477. doi: 10.1371/journal.pone.0221477
  44. Rolfe B, Stamatiou S, World CJ, et al. Leukaemia inhibitory factor retards the progression of atherosclerosis. Cardiovascular Res. 2003;58:222-30. doi: 10.1016/S0008-6363(02)00832-5
  45. Konii H, Sato K, Kikuchi S, et al. Stimulatory effects of cardiotrophin 1 on atherosclerosis. Hypertension. 2013;62:942–50. doi: 10.1161/HYPERTENSIONAHA.113.01653
  46. Miteva K, Baptista D, Montecucco F, et al. Cardiotrophin-1 deficiency abrogates atherosclerosis progression. Sci Rep. 2020;10:5791. doi: 10.1038/s41598-020-62596-6
  47. Pasquin S, Laplante V, Kouadri S, et al. Cardiotrophin-like cytokine increases macrophage-foam cell transition. J Immunology. 2018;201:2462-71. doi: 10.4049/jimmunol.1800733
  48. Wang JH, Zhao L, Pan X, et al. Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF-β1 signaling pathway. Lab Invest. 2016;96:839-52. doi: 10.1038/labinvest.2016.65
  49. Jing R, Long TY, Pan W, et al. IL-6 knockout ameliorates myocardial remodeling after myocardial infarction by regulating activation of M2 macrophages and fibroblast cells. Eur Rev Med Pharmacol Sci. 2019;23:6283-91. doi: 10.26355/eurrev_201907_18450
  50. Schafer S, Viswanathan S, Widjaja AA, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110-5. doi: 10.1038/nature24676
  51. Obana M, Maeda M, Takeda K, et al. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation. 2010;121:684-91. doi: 10.1161/CIRCULATIONAHA.109.893677
  52. Li Q, Ye WX, Huang ZJ, et al. Effect of IL-6-mediated STAT3 signaling pathway on myocardial apoptosis in mice with dilated cardiomyopathy. Eur Rev Med Pharmacol Sci. 2019;23:3042-50. doi: 10.26355/eurrev_201904_17586
  53. Liu X, Zhang W, Han Z. Decreased circulating follicular regulatory T cells in patients with dilated cardiomyopathy. Braz J Med Biol Res. 2021;54(12):e11232. doi: 10.1590/1414-431X2021e11232
  54. Kažukauskienė I, Baltrūnienė V, Rinkūnaitė I, et al. Inflammation-related biomarkers are associated with heart failure severity and poor clinical outcomes in patients with non-ischemic dilated cardiomyopathy. Life (Basel). 2021;11(10):1006. doi: 10.3390/life11101006
  55. Scally C, Abbas H, Ahearn T, et al. Myocardial and systemic inflammation in acute stress-induced (takotsubo) cardiomyopathy. Circulation. 2019;139(13):1581-92. doi: 10.1161/CIRCULATIONAHA.118.037975
  56. Monserrat L, López B, González A, et al. Cardiotrophin-1 plasma levels are associated with the severity of hypertrophy in hypertrophic cardiomyopathy. Eur Heart J. 2011;32(2):177-83. doi: 10.1093/eurheartj/ehq400
  57. Tsutamoto T, Wada A, Maeda K, et al. Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2001;38(5):1485-90. doi: 10.1016/s0735-1097(01)01576-5
  58. Zhang E, Ma S, Zhang R, et al. Oncostatin M-induced cardiomyocyte dedifferentiation regulates the progression of diabetic cardiomyopathy through B-Raf/Mek/Erk signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2016;48:257-65. doi: 10.1093/abbs/gmv137
  59. Abe H, Takeda N, Isagawa T, et al. Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nature Communications. 2019;10:2824. doi: 10.1038/s41467-019-10859-w
  60. Zou Y, Takano H, Mizukami M, et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation. 2003;108:748-53. doi: 10.1161/01.CIR.0000081773.76337.44
  61. Zgheib C, Zouein FA, Kurdi M, Booz GW. Chronic treatment of mice with leukemia inhibitory factor does not cause adverse cardiac remodeling but improves heart function. European Cytokine Network. 2012;23:191-7. doi: 10.1684/ecn.2012.0319
  62. Hamzic-Mehmedbasic A. Inflammatory cytokines as risk factors for mortality after acute cardiac events. Med Arch. 2016;70(4):252-5. doi: 10.5455/medarh.2016.70.252-255
  63. Markousis-Mavrogenis G, Tromp J, Ouwerkerk W, et al. The clinical significance of interleukin-6 in heart failure: results from the BIOSTAT-CHF study. Eur J Heart Failure. 2019;21:965-73. doi: 10.1002/ejhf.1482
  64. Ye J, Wang Z, Ye D, et al. Increased interleukin-11 levels are correlated with cardiac events in patients with chronic heart failure. Mediators Inflamm. 2019;2019:1575410. doi: 10.1155/2019/1575410
  65. Gruson D, Ferracin B, Ahn SA, Rousseau MF. Elevation of plasma oncostatin M in heart failure. Future Cardiol. 2017;13(3):219-27. doi: 10.2217/fca-2016-0063
  66. Kubin T, Pöling J, Kostin S, et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell. 2011;9:420-32. doi: 10.1016/j.stem.2011.08.013
  67. Martínez-Martínez E, Brugnolaro C, Ibarrola J, et al. CT-1 (Cardiotrophin-1)-Gal-3 (Galectin-3) Axis in cardiac fibrosis and inflammation. Hypertension. 2019;73:602-11. doi: 10.1161/HYPERTENSIONAHA.118.11874
  68. Song K, Wang S, Huang B, et al. Plasma cardiotrophin-1 levels are associated with hypertensive heart disease: a meta-analysis. J Clinical Hypertension. 2014;16:686-92. doi: 10.1111/jch.12376

© ООО "Консилиум Медикум", 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах