An iterative algorithm for solving nonlinear integral equations
- Autores: Zaitsev B.A.1, Medvedik M.Y.1
-
Afiliações:
- Penza State University
- Edição: Nº 3 (2025)
- Páginas: 36-44
- Seção: MATHEMATICS
- URL: https://journals.rcsi.science/2072-3040/article/view/360893
- DOI: https://doi.org/10.21685/2072-3040-2025-3-4
- ID: 360893
Citar
Texto integral
Resumo
Background. The purpose of this study is to develop an effective algorithm for solving nonlinear integral equations. Materials and methods. The method is based on the application of the principle of contraction mappings. The paper presents a description of the method and its justification. Results. The application of the method to various problems is considered, numerical results of solving integral equations are presented, showing the convergence of the method. Conclusions. The solution of test problems is given for various nonlinearity parameters, which allows us to draw a conclusion about the quality of the proposed method.
Sobre autores
Boris Zaitsev
Penza State University
Autor responsável pela correspondência
Email: zaytcsevborist@gmail.com
Student
(40 Krasnaya street, Penza, Russia)Mikhail Medvedik
Penza State University
Email: _medv@mail.ru
Candidate of physical and mathematical sciences, associate professor, associate professor of the sub-department of mathematics and supercomputer modeling
(40 Krasnaya street, Penza, Russia)Bibliografia
- Bakushinskiy A.B., Kokurin M.Yu. Iterative methods for solving irregular equations: a textbook for the course “Mathematical methods of systems analysis”. In-t sistemnogo analiza RAN = Institute of Systems Analysis of the Russian Academy of Sciences. Moscow: Editorial URSS, 2006:112. (In Russ.)
- Bakhvalov N.S. Chislennyye metody = Numerical methods. Moscow: Nauka, 1975:632. (In Russ.)
- Mikhlin S.G., Smolitskiy Kh.L. Priblizhennyye metody resheniya differentsialnykh i integralnykh uravneniy = Approximate methods for solving differential and integral equations. Moscow: Nauka, 1965:384. (In Russ.)
- Kress R. Linear Integral Equations. New York: Springer-Verlag, 1999:365.
- Lapich A.O., Medvedik M.Yu. Two iterative methods for solving the volume syngular equation for a nonlinear diffraction problem in a semi-infinite rectangular waveguide. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskiye nauki = University proceedings. Volga region. Physical and mathematical sciences. 2023;(4):49–59. (In Russ.). doi: 10.21685/2072-3040-2023-4-5
- Lapich A.O., Medvedik M.Yu. An iterative scheme for solving a nonlinear integral equation of the Lippmann–Schwinger type using the Galerkin method. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskiye nauki = University proceedings. Volga region. Physical and mathematical sciences. 2023;(3):66– 73. (In Russ.). doi: 10.21685/2072-3040-2023-3-5
- Lapich A.O., Medvedik M.Yu. Algorithm for searching for inhomogeneities in inverse nonlinear diffraction problems. Uchenyye zapiski Kazanskogo universiteta. Seriya Fiziko- matematicheskiye nauki = Proceedings of Kazan University. Series: Physical and mathematical sciences. 2024;166(3):395–406. (In Russ.)
- Antonov A.V., Medvedik M.Yu., Smirnov Yu.G. Development of a web-based computing system for solving three-dimensional vector problems of electromagnetic wave diffraction based on subhierarchical parallel algorithms and grid technologies. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskiye nauki = University proceedings. Volga region. Physical and mathematical sciences. 2007;(4):60–67. (In Russ.)
- Zhukovskaya L.V. An iterative method for solving nonlinear integral equations describing rolling solutions in string theory. Teoreticheskaya i matematicheskaya fizika = Theoretical and mathematical physics. 2006;146(3):402–409. (In Russ.)
- Krasnov M.L. Integralnyye uravneniya: Vvedeniye v teoriyu = Integral equations: introduction to theory. Moscow: Nauka, 2019:304. (In Russ.)
Arquivos suplementares

