A Fourth-Order Accurate Difference Scheme for a Differential Equation with Variable Coefficients
- Авторы: Gordin V.A.1,2, Tsymbalov E.A.1,3
-
Учреждения:
- Higher School of Economics
- Hydrometeorological Center of Russia
- Skolkovo Institute of Science and Technology
- Выпуск: Том 10, № 1 (2018)
- Страницы: 79-88
- Раздел: Article
- URL: https://journals.rcsi.science/2070-0482/article/view/202088
- DOI: https://doi.org/10.1134/S2070048218010064
- ID: 202088
Цитировать
Аннотация
A compact difference scheme on a three-point stencil for an unknown function is proposed. The scheme approximates a second-order linear differential equation with a variable smooth coefficient. Our numerical experiment confirms the fourth order of accuracy of the solution of the difference scheme and of the approximation of the eigenvalues of the boundary problem. The difference operator is almost self-adjoint and its spectrum is real. Richardson extrapolation helps to increase the order of accuracy.
Ключевые слова
Об авторах
V. Gordin
Higher School of Economics; Hydrometeorological Center of Russia
Автор, ответственный за переписку.
Email: vagordin@mail.ru
Россия, Moscow; Moscow
E. Tsymbalov
Higher School of Economics; Skolkovo Institute of Science and Technology
Email: vagordin@mail.ru
Россия, Moscow; Moscow
Дополнительные файлы
