Self-similar solution of a hydraulic fracture problem for a poroelastic medium
- Авторы: Karakin A.V.1,2, Ramazanov M.M.1,3, Borisov V.E.1, Men’shov I.S.1, Savenkov E.B.1
-
Учреждения:
- Keldysh Institute of Applied Mathematics
- Oil and Gas Research Institute
- Institute for Geothermal Problems, Dagestan Scientific Center
- Выпуск: Том 9, № 6 (2017)
- Страницы: 657-668
- Раздел: Article
- URL: https://journals.rcsi.science/2070-0482/article/view/201962
- DOI: https://doi.org/10.1134/S2070048217060060
- ID: 201962
Цитировать
Аннотация
A solution of a coupled problem on the propagation of a hydraulic fracture (HF) with respect to the processes of deformation and flow in a poroelastic medium is considered. The fracture is formed and developed under the impact of a Newtonian fluid pumped into it through a well. The sets of self-similar solutions are constructed. These solutions are used to describe the evolution of a penny-shaped shallow fracture in a poroelastic medium with a uniform pressure inside the fracture. This work is a part of the HF publication series, which are based on splitting the original equations into components in accordance with the incomplete coupling principle.
Об авторах
A. Karakin
Keldysh Institute of Applied Mathematics; Oil and Gas Research Institute
Автор, ответственный за переписку.
Email: avkarakin@gmail.com
Россия, Moscow; Moscow
M. Ramazanov
Keldysh Institute of Applied Mathematics; Institute for Geothermal Problems, Dagestan Scientific Center
Email: avkarakin@gmail.com
Россия, Moscow; Makhachkala
V. Borisov
Keldysh Institute of Applied Mathematics
Email: avkarakin@gmail.com
Россия, Moscow
I. Men’shov
Keldysh Institute of Applied Mathematics
Email: avkarakin@gmail.com
Россия, Moscow
E. Savenkov
Keldysh Institute of Applied Mathematics
Email: avkarakin@gmail.com
Россия, Moscow
Дополнительные файлы
