Exponential difference schemes for solving boundary-value problems for convection-diffusion type equations


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The paper considers the numerical solution of boundary-value problems for multidimensional convection-diffusion type equations (CDEs). Such equations are useful for various physical processes in solids, liquids and gases. A new approach to the spatial approximation for such equations is proposed. This approach is based on an integral transformation of second-order one-dimensional differential operators. A linear version of CDE was chosen for simplicity of the analysis. In this setting, exponential difference schemes were constructed, algorithms for their implementation were developed, a brief analysis of the stability and convergence was made. This approach was numerically tested for a two-dimensional problem of motion of metallic particles in water flow subject to a constant magnetic field.

Об авторах

S. Polyakov

Keldysh Institute of Applied Mathematics; Moscow Institute of Engineering Physics

Автор, ответственный за переписку.
Email: polyakov@imamod.ru
Россия, Moscow, 125047; Moscow, 115409

Yu. Karamzin

Keldysh Institute of Applied Mathematics

Email: polyakov@imamod.ru
Россия, Moscow, 125047

T. Kudryashova

Keldysh Institute of Applied Mathematics

Email: polyakov@imamod.ru
Россия, Moscow, 125047

I. Tsybulin

Moscow Institute of Physics and Technology

Email: polyakov@imamod.ru
Россия, Dolgoprudnyi, Moscow oblast, 141700

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).