A Multicriteria Method for Identification and Forecasting


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A multicriteria approach to identify and forecast mathematical models is considered. The need for such an approach arises, in particular, when it is necessary to take into account errors that cannot be reduced to one function and in the absence of specific information about the data interference class. The paper deals with a multicriteria version of the identification sets method based on approximating and visualizing the graph of the vector function of identification errors and its projections onto the space of identification parameters. The nearness function is introduced that describes the proximity of a criterion point to the set of nonimprovable (Pareto efficient) solutions of the identification problem. The efficient criteria set (Pareto frontier), the sets of efficient and subefficient parameters, and the corresponding forecast trajectory tubes are studied. To construct these objects, methods for approximating implicitly specified sets are used, in particular, methods for approximating the Edgeworth–Pareto hull and the deep holes method. The technique and examples for two criteria of identification quality are considered in detail.

Sobre autores

G. Kamenev

Dorodnicyn Computing Centre

Autor responsável pela correspondência
Email: gkk@ccas.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018