Local zeta functions, pseudodifferential operators and Sobolev-type spaces over non-Archimedean local fields


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this articlewe introduce a new type of local zeta functions and study some connections with pseudodifferential operators in the framework of non-Archimedean fields. The new local zeta functions are defined by integrating complex powers of norms of polynomials multiplied by infinitely pseudo-differentiable functions. In characteristic zero, the new local zeta functions admit meromorphic continuations to the whole complex plane, but they are not rational functions. The real parts of the possible poles have a description similar to the poles of Archimedean zeta functions. But they can be irrational real numbers while in the classical case are rational numbers. We also study, in arbitrary characteristic, certain connections between local zeta functions and the existence of fundamental solutions for pseudodifferential equations.

作者简介

W. Zúñiga-Galindo

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Matemáticas, Unidad Querétaro, Libramiento Norponiente #2000, Fracc. Real de Juriquilla

编辑信件的主要联系方式.
Email: wazuniga@math.cinvestav.edu.mx
墨西哥, Qro., 76230

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017