Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 10, № 4 (2018)

Review Articles

Towards Three-Dimensional Conformal Probability

Abdesselam A.

Аннотация

In this outline of a program, based on rigorous renormalization group theory, we introduce new definitions which allow one to formulate precise mathematical conjectures related to conformal invariance as studied by physicists in the area known as higher-dimensional conformal bootstrap which has developed at a breathtaking pace over the last few years. We also explore a second theme, intimately tied to conformal invariance for random distributions, which can be construed as a search for very general first and second-quantized Kolmogorov-Chentsov Theorems. First-quantized refers to regularity of sample paths. Second-quantized refers to regularity of generalized functionals or Hida distributions and relates to the operator product expansion.We formulate this program in both the Archimedean and p-adic situations. Indeed, the study of conformal field theory and its connections with probability provides a golden opportunity where p-adic analysis can lead the way towards a better understanding of open problems in the Archimedean setting. Finally, we present a summary of progress made on a p-adic hierarchical model and point out possible connections to number theory. Parts of this article were presented in author’s talk at the 6th International Conference on p-adicMathematical Physics and its Applications,Mexico 2017.

p-Adic Numbers, Ultrametric Analysis and Applications. 2018;10(4):233-252
pages 233-252 views

A Review of Finite Approximations, Archimedean and Non-Archimedean

Digernes T.

Аннотация

We give a review of finite approximations of quantum systems, both in an Archimedean and a non-Archimedean setting. Proofs will generally be omitted. In the Appendix we present some numerical results.

p-Adic Numbers, Ultrametric Analysis and Applications. 2018;10(4):253-266
pages 253-266 views

Research Articles

A Note on Complex p-Adic Exponential Fields

Bleybel A.

Аннотация

In this paper we apply Ax-Schanuel’s Theorem to the ultraproduct of p-adic fields in order to get some results towards algebraic independence of p-adic exponentials for almost all primes p.

p-Adic Numbers, Ultrametric Analysis and Applications. 2018;10(4):267-275
pages 267-275 views

Phase Transition of Mixed Type p-Adic λ-Ising Model on Cayley Tree

Dogan M.

Аннотация

In the present paper, we consider an interaction of the nearest-neighbors and next nearest-neighbors for the mixed type p-adic λ-Ising model with spin values {−1, +1} on the Cayley tree of order two.We obtained the uniqueness and existence of the p-adic quasi Gibbs measures for the model. Thereafter, as a main result, we proved the occurrence of phase transition for the p-adic λ-Ising model on the Cayley tree of order two. To establish the results, we employed some properties of p-adic numbers. Therefore, our results are not valid in the real case.

p-Adic Numbers, Ultrametric Analysis and Applications. 2018;10(4):276-286
pages 276-286 views

From Isomorphic Rooted Trees to Isometric Ultrametric Spaces

Dovgoshey O., Petrov E.

Аннотация

For every finite ultrametric space X we can put in correspondence its representing tree TX. We found conditions under which the isomorphism of representing trees TX and TY implies the isometricity of ultrametric spaces X and Y having the same range of distances.

p-Adic Numbers, Ultrametric Analysis and Applications. 2018;10(4):287-298
pages 287-298 views

A Possible p-Adic Weber-Fechner Law

Iurato G.

Аннотация

From a simple extension of a previous formal pattern of unconscious-conscious interconnection based on the representation of mental entities by m-adic numbers through hysteresis phenomenology, a pattern which has been then used to work out a possible psychoanalytic model of human consciousness, we now argue on related simple derivations of p-adic Weber-Fechner laws of psychophysics.

p-Adic Numbers, Ultrametric Analysis and Applications. 2018;10(4):299-304
pages 299-304 views

Biology as a Constructive Physics

Kozyrev S.

Аннотация

Yuri Manin’s approach to Zipf’s law (Kolmogorov complexity as energy) is applied to investigation of biological evolution. Model of constructive statistical mechanics where complexity is a contribution to energy is proposed to model genomics. Scaling laws in genomics are discussed in relation to Zipf’s law. This gives a model of Eugene Koonin’s Third Evolutionary Synthesis – physical model which should describe scaling in genomics.

p-Adic Numbers, Ultrametric Analysis and Applications. 2018;10(4):305-311
pages 305-311 views

Generalized p-Adic Fourier Transform and Estimates of Integral Modulus of Continuity in Terms of This Transform

Volosivets S., Kuznetsova M.

Аннотация

We consider a new class of functions on the p-adic linear space ℚpn for which a Fourier transform can be defined.We prove equalities of Parseval type, an inversion formula and a sufficient condition for a function to be represented as this Fourier transform. Also we give a sharp estimate of the L2(ℚpn) modulus of continuity in terms of Fourier transform generalizing the result of S. S. Platonov in the case n = 1. Finally we prove a generalization of this result and its converse for Lq(ℚpn) with appropriate q.

p-Adic Numbers, Ultrametric Analysis and Applications. 2018;10(4):312-321
pages 312-321 views

On the Solutions of Cauchy Problem for Two Classes of Semi-Linear Pseudo-Differential Equations over p-Adic Field

Pourhadi E., Khrennikov A.

Аннотация

Throughout this paper, using the p-adic wavelet basis together with the help of separation of variables and the Adomian decomposition method (as a scheme in numerical analysis) we initially investigate the solution of Cauchy problem for two classes of the first and second order of pseudo-differential equations involving the pseudo-differential operators such as Taibleson fractional operator in the setting of p-adic field.

p-Adic Numbers, Ultrametric Analysis and Applications. 2018;10(4):322-343
pages 322-343 views

Short Communications

Andrei Yurievich Khrennikov and his Research

Anashin V., Dragovich B., Kochubei A., Kozyrev S., Volovich I.

Аннотация

This paper contains a brief review of a very diverse and vast scientific work of Andrei Yurievich Khrennikov on the occasion of his 60th birthday.

p-Adic Numbers, Ultrametric Analysis and Applications. 2018;10(4):344-347
pages 344-347 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».