On Integrable Delta Functions on the Levi-Civita Field


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper, we develop a theory of integrable delta functions on the Levi-Civita field R as well as on R2 and R3 with similar properties to the one-dimensional, two-dimensional and three-dimensional Dirac Delta functions and which reduce to them when restricted to points in R, R2 and R3, respectively. First we review the recently developed Lebesgue-like measure and integration theory over R, R2 and R3. Then we introduce delta functions on R, R2 and R3 that are integrable in the context of the aforementioned integration theory; and we study their properties and some applications.

Авторлар туралы

Darren Flynn

Department of Physics and Astronomy

Хат алмасуға жауапты Автор.
Email: flynnd3@myumanitoba.ca
Канада, Winnipeg, Manitoba, R3T 2N2

Khodr Shamseddine

Department of Physics and Astronomy

Email: flynnd3@myumanitoba.ca
Канада, Winnipeg, Manitoba, R3T 2N2

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018