Нормативные методы и численное моделирование при определении параметров расчетных волн для портовых гидротехнических сооружений

Обложка

Цитировать

Полный текст

Аннотация

Введение. Указывается важность использования композитного моделирования при проектировании волновых нагрузок и воздействий на портовые гидротехнические сооружения, а именно определения параметров расчетных волн. В нормативных документах, предназначенных для вычисления допустимых значений элементов волн для безопасного обслуживания судов у причала, отмечаются некоторые недостатки, часть из которых описывается в данной статье.Материалы и методы. В качестве примеров рассматриваются два объекта: Западный транспортно-логистический узел, проектируемый в Кольском заливе Баренцева моря (где для численного моделирования применялись модель расчета ветровых волн SWAN и модель течений и уровней воды COASTOX-CUR, вычисления аналитическим методом осуществлены по СП 38.13330.2018), и Многофункциональный грузовой район, располагающийся в заливе Терпения Охотского моря (вычисления выполнялись в модели ветровых волн SWAN и длинноволновой модели SWASH). Для первого случая использовались значения волн в контрольных точках. Во втором примере — две расчетные модели для определения влияния судна на волновое поле: численная и аналитическая.Результаты. Для первого примера выполнен анализ различий значений параметров волн с отражением и без аналитическим методом. Для второго представлены результаты моделирования — изополя значительных высот волн для стенки с судном и без него, с таблицей значений параметров волн в контрольных точках. Моделирование судна в причальном кармане показано через картины мгновенных отметок взволнованной поверхности и изополя значительных высот с выводом значений в контрольных точках. Представлен анализ полученных величин высот волн в полях с судном и без него.Выводы. Анализ двух сценариев показал, что определение допустимых элементов волн у причала для безопасного обслуживания судов, выполненных по актуальным нормативным документам, может приводить к противоречиям, а именно между исходными данными для расчетов и значительным изменением полей волн акватории порта при взаимодействии волны с ошвартованным судном. Как следствие, это влияет на окончательное заключение о безопасном взаимодействии судов с причальными сооружениями.

Об авторах

И. Г. Кантаржи

Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)

Email: kantardgi@yandex.ru

А. Г. Гогин

Компания инжиниринга и строительства «ИСТОК»

Email: alex.gogin@bk.ru

Ж. И. Нагорнова

Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)

Email: nagornova_zhanna10@mail.ru

Список литературы

  1. Gerritsen H., Sutherland J., Deigaard R., Sumer M., Fortes C.J.E.M., Sierra J.P. et al. Composite modelling of interactions between beaches and structures // Journal of Hydraulic Research. 2011. Vol. 49. Issue sup1. Pp. 2–14. doi: 10.1080/00221686.2011.589134
  2. Gerritsen H., Sutherland J., Santos J.A., Boo-gaard H., Caires S., Deigaard R. et al. Composite modeling // Guide to Physical Modelling and Experimentation: Experience of the HYDRALAB Network. 2011.
  3. Kantarzhi I., Anshakov A. Interactive numerical model of hydrometeorologic factors in Kola Bay // E3S Web of Conferences. 2021. Vol. 263. P. 03016. doi: 10.1051/e3sconf/202126303016
  4. Аншаков А.С., Кантаржи И.Г. Верификация численной гидродинамической модели Кольского залива // Вестник МГСУ. 2021. Т. 16. № 4. С. 473–485. doi: 10.22227/1997-0935.2021.4.473-485. EDN WFGZVW.
  5. Афремов А.Ш., Куликова А.Н., Смолина Н.А. Обеспечение безопасности стоянки пришвартованного крупнотоннажного судна в условиях ветра и волнения // Труды Центрального научно-исследовательского института им. академика А.Н. Крылова. 2011. № 59 (343). С. 109–122. EDN NQYKWJ.
  6. Holthuijsen L.H. Waves in oceanic and coastal waters. Cambridge University Press, 2007. doi: 10.1017/cbo9780511618536
  7. Booij N., Haagsma I.J., Holthuijsen L., Kieftenburg A., Ris R., van der Westhuysen A. et al. SWAN Cycle III version 40.51: user manual. 2004.
  8. Hasselmann K., Barnett T.P., Bouws E., Walden H. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) // Ergnzungsheft zur Deutschen Hydrographischen Zeits-chrift Reihe. 1973. No. 12. 95 p.
  9. Aelbrecht D. ARTEMIS 3.0: A finite element model for predicting wave agitation in coastal areas and harbours including dissipation // Computer Modelling of Seas and Coastal Regions III. 1997. Vol. 30. Pp. 343–352. doi: 10.2495/CE970331
  10. Berkhoff J.C.W. Computation of combined refraction — diffraction // Coastal Engineering 1972. 1972. Pp. 471–490. doi: 10.1061/9780872620490.027
  11. Berkhoff J.C. Mathematical models for simple harmonic linear water waves: wave diffraction and refraction. Delft, Hydraulic Laboratory, 1976. 102 p.
  12. Hervouet J.M. TELEMAC, a hydroinformatic system // La Houille Blanche. 1999. Vol. 85. Issue 3–4. Pp. 21–28. doi: 10.1051/lhb/1999029
  13. Kofoed-Hansen H., Sloth P., Sørensen O.R., Fuchs J. Combined numerical and physical modelling of seiching in exposed new marina // Coastal Engineering 2000. 2001. Pp. 3600–3614. doi: 10.1061/40549(276)281
  14. Smit P., Stelling G., Zijlema M. Assessment of non-hydrostatic wave-flow model SWASH for directionally spread waves propagating through a barred basin // ACOMEN 2011. 2011.
  15. Rijnsdorp D.P., Smit P.B., Zijlema M. Non-hydrostatic modelling of infragravity waves using SWASH // Coastal Engineering Proceedings. 2012. Issue 33. P. 27. doi: 10.9753/icce.v33.currents.27
  16. Zijlema M., Stelling G., Smit P. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters // Coastal Engineering. 2011. Vol. 58. Issue 10. Pp. 992–1012. doi: 10.1016/j.coastaleng.2011.05.015
  17. Дивинский Б.В., Косьян Р.Д., Куклев С.Б. Параметры ветрового волнения на защищенных акваториях // Фундаментальная и прикладная гидрофизика. 2010. Т. 3. № 4. С. 5–16. EDN NCCVAV.
  18. Дикий П.В., Дзюба Н.Н., Железняк М.И., Сорокин М.В. Моделирование волнового режима побережья Имеретинской низменности // International Journal for Computational Civil and Structural Engineering. 2011. Т. 7. № 2. С. 54–63. EDN PZEXEN.
  19. Галенин Б.Г., Кузнецов В.В. Моделирование трансформации волн в прибрежной зоне // Водные ресурсы. 1980. Т. 1. С. 156–165.
  20. Warner J.C., Geyer W.R., Lerczak J.A. Numerical modeling of an estuary: a comprehensive skill assessment // Journal of Geophysical Research: Oceans. 2005. Vol. 110. Issue C5. doi: 10.1029/2004JC002691
  21. Warner J.C., Geyer W.R., Arango H.G. Using a composite grid approach in a complex coastal domain to estimate estuarine residence time // Computers & Geosciences. 2010. Vol. 36. Issue 7. Pp. 921–935. doi: 10.1016/j.cageo.2009.11.008

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).