Numerical Simulations of Subcooled Boiling Flow in Vertical Pipe at High Pressure


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of numerical modeling of hydrodynamics and heat and mass transfer at boiling of subcooled liquids in conditions of forced flow in vertical heated pipes are presented. The mathematical model is based on the use of Euler’s description of mass, motion and energy conservation for liquid and gas phases, recorded within the framework of the theory of interacting continua. The turbulent characteristics of the fluid are calculated using a modified model of transfer of components of the Reynolds stress tensor, taking into account the presence of the gaseous phase in the medium. For an approximate calculation of the heat transfer coefficient for bubble boiling of a liquid near the heat-generating wall, generalized empirical dependences are used, taking into account the various mechanisms of heat transfer in a two-phase vapor-liquid medium. Comparison of the results of numerical modeling with experimental data has shown that the proposed approach allows to simulate bubble boiling modes in a wide range of pressure values, mass flow rates, heating modes of subcooled liquids during forced turbulent fluid flow in vertical pipes.

作者简介

D. Gubaidullin

Institute of Mechanics and Engineering, Kazan Scientific Center

编辑信件的主要联系方式.
Email: Gubaidullin@imm.knc.ru
俄罗斯联邦, Kazan, Tatarstan, 420111

B. Snigerev

Institute of Mechanics and Engineering, Kazan Scientific Center

编辑信件的主要联系方式.
Email: snigerev@imm.knc.ru
俄罗斯联邦, Kazan, Tatarstan, 420111


版权所有 © Pleiades Publishing, Ltd., 2019
##common.cookie##