The Method of Integral Equations in Problems of Wave Diffraction in Waveguides


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

This paper studies the propagation of steady-state oscillations in an irregular rectangular waveguide. The irregularity of the waveguide is caused by the presence inside it of a metallic inclusion in the form of a cylindrical inductive cylinder. To solve the problem in a complete electrodynamic formulation, it is necessary to investigate the boundary problem for the system of Maxwell equations. To study the waveguide system consisting of a waveguide with a well-conducting inclusion, the method of integral equations was applied. The cores of the integral equations are defined through the Green functions of the unfilled waveguide, written in terms of the waveguide modes. Algorithms for their calculation are developed on the basis of the selection of a logarithmic singularity, and algorithms for summing up the series belonging to them are created. The possibilities of the method of integral equations are illustrated with examples of calculating the reflection and transmission coefficients from inductive pins.

Об авторах

A. Il’inskii

Faculty of Computational Mathematics and Cybernetics

Автор, ответственный за переписку.
Email: celd@cs.msu.su
Россия, Moscow, 119991

T. Galishnikova

Faculty of Computational Mathematics and Cybernetics

Автор, ответственный за переписку.
Email: tgalish@cs.msu.su
Россия, Moscow, 119991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).