Quantum Online Algorithms with Respect to Space and Advice Complexity


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Online computation is a well-known area of computer science. We introduce quantum online algorithms and investigate them with respect to a competitive ratio in two points of view: space complexity and advice complexity. We start with exploring a model with restricted memory and show that quantum online algorithms can be better than classical ones (deterministic or randomized) for sublogarithmic space (memory), and they can be better than deterministic online algorithms without restriction for memory. Additionally, we consider the polylogarithmic space case and show that in this case, quantum online algorithms can be better than deterministic ones as well. Another point of view to the online algorithms model is advice complexity. So, we introduce quantum online algorithms with a quantum channel with an adviser. Firstly, we show that quantum algorithms have at least the same computational power as classical ones have. We give some examples of quantum online algorithms with advice. Secondly, we show that if we allow to use shared entangled qubits (EPR-pairs), then a quantum online algorithm can use half as many advise qubits compared to a classical one. We apply this approach to the well-known Paging Problem.

Об авторах

K. Khadiev

Smart Quantum Technologies Ltd.; Kazan (Volga region) Federal University

Автор, ответственный за переписку.
Email: kamilhadi@gmail.com
Россия, ul. K. Marksa 5, Kazan, 420111; Kremlevskaya ul. 18, Kazan, Tatarstan, 420008

A. Khadieva

Kazan (Volga region) Federal University; Faculty of Computing

Email: kamilhadi@gmail.com
Россия, Kremlevskaya ul. 18, Kazan, Tatarstan, 420008; Raina bulv. 19, Riga, LV-1586

I. Mannapov

Kazan (Volga region) Federal University

Email: kamilhadi@gmail.com
Россия, Kremlevskaya ul. 18, Kazan, Tatarstan, 420008

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).