Three-dimensional non-reductive homogeneous spaces of solvable groups Lie, admitting affine connections


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

When a homogeneous space admits an invariant affine connection? If there exists at least one invariant connection then the space is isotropy-faithful, but the isotropy-faithfulness is not sufficient for the space in order to have invariant connections. If a homogeneous space is reductive, then the space admits an invariant connection. The purpose of the work is the classification of three-dimensional non-reductive homogeneous spaces, admitting invariant affine connections. We concerned only case, when Lie group is solvable. The local classification of homogeneous spaces is equivalent to the description of effective pairs of Lie algebras. The peculiarity of techniques presented in the work is the application of purely algebraic approach, the compound of different methods of differential geometry, theory of Lie groups, Lie algebras and homogeneous spaces.

Об авторах

N. Mozhey

Belarusian State University of Informatics and Radioelectronics

Автор, ответственный за переписку.
Email: mozheynatalya@mail.ru
Белоруссия, Minsk, 220013

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).