Discovery of Time Series Motifs on Intel Many-Core Systems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A motif is a pair of subsequences of a longer time series, which are very similar to each other. Motif discovery is applied in a wide range of subject areas involving time series: medicine, biology, entertainment, weather prediction, and others. In this paper, we propose a novel parallel algorithm for motif discovery using Intel MIC (Many Integrated Core) accelerators in the case when time series fit in the main memory. We perform parallelization through thread-level parallelism and OpenMP technology. The algorithm employs a set of matrix data structures to store and index the subsequences of a time series and to provide an efficient vectorization of computations on the Intel MIC platform. The experimental evaluation shows the high scalability of the proposed algorithm.

Sobre autores

M. Zymbler

South Ural State University

Autor responsável pela correspondência
Email: mzym@susu.ru
Rússia, Chelyabinsk, 454080

Ya. Kraeva

South Ural State University

Autor responsável pela correspondência
Email: kraevaya@susu.ru
Rússia, Chelyabinsk, 454080

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019