The use of Ann for the prediction of the modified relative permeability functions in stratified reservoirs


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper presents a method of instantaneous construction of relative permeability pseudo functions in analytical form upscaled to a coarser computational grid using a system of artificial neural networks. The coefficients of these functions can be forecasted by the neural network. The learning dataset is based on a preliminary series of calculations at the reference values of the system parameters the exponents of the initial functions, the liquid phases viscosity ratio, the statistical parameters of distribution laws of the reservoir’s properties. The latter may be obtained according to the primary well logging data with no need for building a detailed geological model.

Sobre autores

K. Potashev

Kazan (Volga Region) Federal University, N.I. Lobachevsky Institute of Mathematics and Mechanics

Autor responsável pela correspondência
Email: kpotashev@mail.ru
Rússia, Kazan, 420008

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017