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Аннотация. Актуальность. Методы машинного обучения сегодня широко применяются в поиске фармакологических 

веществ. При этом характер и внутренняя структура химико-биологических данных являются весьма специфическими, а по-
давляющее большинство лекарственных веществ действуют одновременно на несколько биомишеней. С учетом этого раз-
работка новых архитектур искусственных нейронных сетей для анализа зависимостей между биологической активностью  
и структурой химических соединений с учетом особого характера химико-биологической информации и взаимодействия  
веществ с несколькими биомишенями является актуальной и научно востребованной задачей. Цель. Создание новой архи-
тектуры модульной мультитаргетной полносвязной сверточной нейронной сети на основе корреляционной свертки спектров 
энергий множественного докинга в несколько биомишеней, предназначенной для поиска in silico биологически активных 
соединений. Материалы и методы. Ансамблевый множественный докинг 234 соединений с антимикробной S. aureus ак-
тивностью и 537 соединений с анксиолитической активностью в 10 и 22 релевантных биомишенях соответственно и форми-
рование спектров энергий их множественного докинга были выполнены с помощью оригинальной программы MSite и про-
граммы AutoDock Vina. С использованием полученных спектров энергий множественного докинга с помощью оригинальной  
программы FCCorNet проведено построение двух модульных мультитаргетных полносвязных сверточных корреляционных 
нейронных сетей, описывающих зависимости уровней антибактериальной S. aureus и анксиолитической активностей хими-
ческих соединений от энергий их модульных нейросетей. Методами корреляционного анализа, однофакторного дисперсион-
ного анализа и пороговой классификации оценены показатели точности и статистической достоверности построенных ней-
росетевых моделей. Результаты и обсуждение. Точность построенной нейросетевой модели для антимикробной S. aureus 
активности составила Acc = 78,9 %, при статистической достоверности p = 3,44 × 10-12. Точность построенной нейросетевой 
модели для анксиолитической активности составила Acc = 61,3 %, при статистической достоверности p = 6,68 × 10-8. Точность 
прогноза антимикробной S. aureus активности превышает точность прогноза анксиолитической активности, что, вероятно, 
связано с более сложным системным мультитаргетным механизмом реализации психотропных эффектов, в сравнении с ан-
тибактериальным действием химических соединений. Полученные результаты доказывают высокую валидность применения 
новой архитектуры модульной мультитаргетной полносвязной сверточной корреляционной нейронной сети на основе спек-
тров энергий множественного докинга для поиска in silico биологически активных веществ. Заключение. Разработан новый 
метод искусственного интеллекта для поиска in silico биологически активных соединений – модульная мультитаргетная пол-
носвязная сверточная корреляционная нейронная сеть на основе спектров энергий множественного докинга в релевантные 
биомишени. Методами многомерной статистики показаны высокая точность и статистическая достоверность построенных  
нейросетевых моделей, достигающая p = 3,44 × 10-12 для антибактериальной S. aureus активности и p = 6,68 × 10-8 для анк-
сиолитической активности. Созданная методология может быть использована для поиска in silico новых высокоактивных 
соединений с различными видами системной мультитаргетной биологической и фармакологческой активности с учетом  
их интегральной аффинности к релевантным белкам-мишеням.

Ключевые слова: искусственный интеллект, биологически активные соединения, модульная полносвязная сверточная 
нейронная сеть, мультитаргетный множественный докинг, спектр энергий множественного докинга, корреляционная свертка
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Abstract. Relevance: Machine learning methods are widely used today in the search for pharmacological compounds. The 
nature and internal structure of chemical and biological data are highly specific, and the vast majority of drugs act simultaneously 
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on multiple biotargets. Given this, the development of new artificial neural network architectures for analyzing the relationships 
between the biological activity and structure of chemical compounds, taking into account the specific nature of chemical and biological 
information and the interactions of compounds with multiple biotargets, is important and scientifically relevant task. Objective: 
To create a new architecture for a modular multi-target fully connected convolutional neural network based on correlation convolution 
of energy spectra of multiple docking to multiple biotargets, for the in silico searching biological active compounds. Materials and 
methods: Ensemble multiple docking of 234 compounds with antimicrobial activity against S. aureus and 537 compounds with 
anxiolytic activity into 10 and 22 relevant biotargets, respectively, and the generation of their energy spectra of multiple docking were 
performed using the original MSite program and AutoDock Vina program. Using the obtained energy spectra of multiple docking, 
two modular multi-target fully-connected convolutional correlation neural networks were constructed using the original FCCorNet 
program. These networks describe the dependences of the levels of antibacterial activity against S. aureus and anxiolytic activity of 
chemical compounds on the energies of their modular neural networks. The accuracy and statistical significance of the constructed 
neural network models were assessed using correlation analysis, one-way analysis of variance, and threshold classification. Results 
and discussion: The accuracy of the constructed neural network model for the antimicrobial S. aureus activity was Acc = 78.9 %, with 
statistical significance p = 3.44 × 10-12. The accuracy of the constructed neural network model for anxiolytic activity was Acc = 61.3 %, 
with statistical significance p = 6.68 × 10-8. The accuracy of predicting the antimicrobial S. aureus activity exceeds the accuracy 
of predicting the anxiolytic activity, which is probably due to a more complex systemic multi-target mechanism for implementing 
psychotropic effects, in comparison with the antibacterial action of chemical compounds. The obtained results prove the high validity 
of using the new architecture of the modular multi-target fully connected convolutional correlation neural network based on the energy 
spectra of multiple docking for in silico searching biological active substances. Conclusion: A new artificial intelligence method for 
in silico searching biological active compounds has been developed: a modular multi-target fully connected convolutional correlation 
neural network based on the energy spectra of multiple docking into relevant biotargets. Multivariate statistics methods demonstrated 
high accuracy and statistical significance of the constructed neural network models, reaching p = 3.44 × 10-12 for antibacterial activity 
against S. aureus and p = 6.68 × 10-8 for anxiolytic activity. The developed methodology can be used for in silico searching new 
highly active compounds with various types of systemic multi-target biological and pharmacological activity, taking into account their 
integrated affinity for relevant target proteins.

Keywords: artificial intelligence, biological active compounds, modular fully connected convolutional neural network, 
multi-target multiple docking, multiple docking energy spectrum, correlation convolution
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Различные методы машинного обучения, сегод-
ня обычно называемые методами искусственного ин-
теллекта, широко применяются в поиске биологически 
активных веществ [1]. Возможность компьютерного  
моделирования интеллектуальной деятельности че-
ловека обсуждается давно: уже в 1950 г. А. Тьюринг 
предложил тест, позволяющий определить, «может ли  
машина совершать действия, неотличимые от обдуман-
ных действий»; этот тест в модифицированном виде 
используется до сих пор. Сам термин «искусственный  
интеллект» был введен Дж. Маккарти в 1956 г. и на про-
тяжении длительного времени под этим обобщающим 
названием выступали самые разные методы машинного 
обучения. Согласно актуальному стандартизованному 
определению 2022 г. [2], искусственный интеллект – это  
«область науки и техники, посвященная разработке 
инженерных систем, которые генерируют выходные 
данные, такие как контент, прогнозы, рекомендации  
или решения для заданного набора определенных че-
ловеком целей». Однако в настоящее время термин  
«искусственный интеллект» общепринято понимается 
более конкретно – как использование для решения по-
ставленных человеком задач искусственных нейронных 
сетей различной архитектуры [3].

Полносвязные нейронные сети [4] отличаются  
от большинства других нейронных сетей тем, что на-
личие отдельного выходного слоя нейронов не являет-
ся обязательным. Применение этой архитектуры по-
зволяет создавать устойчивые эталоны объектов путем 
минимизации некоторого функционала, называемого  

энергией сети. Полученный эталон используется затем  
для определения степени соответствия нового объ-
екта этому эталону. Сверточные нейронные сети [5]  
применяются в том случае, когда необходимо суще-
ственно уменьшить размерность очень избыточно-
го входного описания. Эта технология была разрабо-
тана прежде всего для распознавания изображений  
и в ней используются способы свертки, ориентирован-
ные на решение именно этой задачи.

В случае биологически активных соединений 
характер и внутренняя структура исходных химико-
биологических данных являются весьма специ-
фическими и существенно отличаются от таковых  
для других объектов. В связи с этим в настоящее вре-
мя для поиска фармакологически активных веществ 
широко применяются методы докинга [6], позволяю-
щие посредством молекулярного моделирования оце-
нивать аффинность лигандов к специфическим сайтам  
связывания конкретных белков-мишеней. Между тем, 
хорошо известно, что подавляющее большинство  
лекарственных веществ действуют одновременно  
на несколько биомишеней. Следует отметить, что 
применение методов машинного обучения для поис-
ка мультитаргетных лекарственных соединений сей-
час активно развивается [7]. Однако разрабатываемые 
подходы ориентированы, прежде всего, на использо-
вание монотаргетных методов и, как правило, рассма-
тривают небольшое число биомишеней.

Таким образом, разработка новых архитектур  
и методов построения искусственных нейронных  
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сетей, ориентированных на анализ зависимостей меж-
ду биологической активностью и структурой хими-
ческих соединений, учитывающих особый характер 
химико-биологической информации и возможность 
взаимодействия веществ с несколькими биомишеня-
ми, является актуальной и научно востребованной  
задачей.

В наших предыдущих исследованиях [8] пока-
зано, что метод множественного докинга позволяет 
формировать высоко достоверное описание аффинно-
сти химических соединений к релевантным биомише-
ням. Построенные на основе спектров энергий мно-
жественного докинга нейросетевые модели характе-
ризуются более высокой точностью прогноза уров-
ня активности, в сравнении с простым докингом [9]. 
Метод множественного докинга моделирует взаимо-
действие множества молекул лиганда со всей поверх-
ностью белка-мишени. Белок разделяется на некото-
рое число пространств и в каждое такое пространство 
осуществляется докинг. Полученный вектор энергий 
множественного докинга отражает интегральную аф-
финность лиганда к данной биомишени. Следует осо-
бо подчеркнуть, что применение множественного до-
кинга для расчета аффинности соединений не требует 
определения в белке-мишени местоположения специ-
фического сайта связывания. 

Объединение в один массив спектров энергий 
множественного докинга, вычисленных для несколь-
ких биомишеней, существенно увеличивает размер-
ность предметной области. Для эффективного исполь-
зования таких данных в нейросетевом анализе был 
разработан метод корреляционной свертки, который 
при построении моделей на основе перцептронных 
нейронных сетей прямого распространения показал 
высокую статистическую достоверность и валидность 
[8, 9]. Однако при выполнении подобных расчетов ис-
ходная матрица данных обязательно должна включать 
как минимум одну целевую переменную, задающую 
характеристики выходных нейронов.

ЦЕЛЬ РАБОТЫ 
Разработка новой архитектуры модульной муль-

титаргетной полносвязной сверточной нейронной 
сети на основе корреляционной свертки спектров 
энергий множественного докинга в несколько биоми-
шеней – для поиска in silico биологически активных 
соединений.

МЕТОДИКА ИССЛЕДОВАНИЯ 
Для достижения цели исследования необходимо 

было решить следующие задачи: 
1) разработка алгоритма построения модульной 

мультитаргетной полносвязной сверточной корреля-
ционной нейронной сети на основе спектров энергий 
множественного докинга в несколько биомишеней; 

2) выполнение ансамблевого множественного  
докинга известных соединений с модельными биоло-
гическими активностями в релевантные биомишени 
и формирование спектров энергий их множественно-
го докинга; 

3) построение по спектрам энергий множествен-
ного докинга в релевантные биомишени соединений  
с модельными биологическими активностями мо-
дульных мультитаргетных полносвязных сверточ-
ных корреляционных нейронных сетей и вычисление  
для этих соединений значений энергий построенных 
нейросетей; 

4) кластерный анализ значений энергий модуль-
ных нейросетей для соединений с модельными биоло-
гическими активностями; 

5) формирование тестовых выборок по уровням 
энергий модульных нейросетей и уровням активности 
известных соединений с модельными биологическими 
активностями; 

6) оценка точности зависимостей уровней актив-
ности известных соединений с модельными биологи-
ческими активностями от уровней энергий их модуль-
ных нейросетей.

В проведенном исследовании в качестве модель-
ных биологических активностей были выбраны анти-
бактериальная активность в отношении Staphylococcus 
aureus и анксиолитическая активность. В качестве ма-
териалов выступали: оптимизированные 3D-структуры 
284 известных химических соединений, эксперимен-
тально изученных на антибактериальную в отношении  
S. aureus активность и структурно сходных со скаффол-
дом хиназолинона; валидированные 3D-модели деся-
ти белков-мишеней, релевантных антибактериальной  
S. aureus активности; значения энергий множествен-
ного докинга 537 известных химических соединений,  
экспериментально изученных на анксиолитическую  
активность, в 22 белках-мишенях, релевантных анксио-
литической активности.

Для последовательной обработки и анализа дан-
ных в настоящем исследовании использовались следу-
ющие компьютерные программы: 

1) формирование пространств для множествен-
ного докинга – оригинальная программа MSite 5.6.25; 

2) множественный ансамблевый докинг – 
AutoDock Vina 1.1.1 [10]; 

3) построение модульной мультитаргетной пол-
носвязной сверточной корреляционной нейронной  
сети на основе спектров энергий множественного  
докинга – оригинальная программа FCCorNet 2.2.25; 

4) кластерный анализ – Statistica 7 [11]; 
5) ROC анализ – MedCalc 11.5.0.0. Расчеты  

выполняли с использованием суперкомпьютерной тех-
ники общей производительностью ~37 Тфлопс.

Алгоритм построения модульной мультитар-
гетной полносвязной сверточной корреляционной  
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нейронной сети на основе спектров энергий множе-
ственного докинга в несколько биомишеней

При множественном докинге весь объем целевого 
белка разделяется на 3 × 3 × 3 = 27 пространств и в каж- 
дое такое пространство выполняется ансамблевый до-
кинг, который реализован как пятикратный докинг  
десяти биологически наиболее выгодных конформаций. 
Таким образом, в случае N докируемых соединений,  
эффективное значение энергии множественного докинга 
соединения l в пространство i биомишени m

	
,	 (1)

где l – номер соединения, l = 1...N; m – номер биомише-
ни, m = 1...M; i – номер пространства докинга, i = 1...27; 
j – номер докинга, j = 1...5; k – номер конформации в до-
кинге j, k = 1...10.

В случае множественного докинга в одну биоми-
шень рассчитанные по формуле (1) переменные ΔElmi 
можно рассматривать как нейроны полносвязной ней-
ронной сети с симметричной матрицей связей. Значения  
их весов могут быть вычислены как коэффициенты 
парных корреляций между значениями сигналов двух  
связанных нейронов. Таким образом, для соединения l 
энергия полносвязной сверточной корреляционной ней-
ронной сети может быть представлена в виде

	

,	 (2)

где Rmij – коэффициент корреляции Пирсона между пока-
зателями энергий ΔElmi и ΔElmj, i ≠ j; ΔElmi – значение энер-
гии i в биомишени m для соединения l, l = 1...N, m = 1...M; 
ΔElmj – значение энергии j в биомишени m для соедине-
ния l, l = 1...N, m = 1...M; N – число соединений; M – чис-
ло биомишеней.

Если каждую из M биомишеней определить как са-
мостоятельный модуль, то вычисленные по формуле (2) 
переменные Wlm можно рассматривать как нейроны мо-
дульной полносвязной нейронной сети второго уровня.

Тогда энергия модульной мультитаргетной пол-
носвязной сверточной корреляционной нейронной сети  
по совокупности M биомишеней для соединения l может 
быть представлена в виде

	

,	 (3)

где R'ij – коэффициент корреляции Пирсона между пока-
зателями энергий Wli и Wlj, i ≠ j; Wli – значение энергии 
нейросети для биомишени i для соединения l, l = 1...N, 
i = 1...M; Wlj – значение энергии нейросети для биоми-
шени j для соединения l, l = 1...N, j = 1...M; N – число 
соединений; M – число биомишеней.

Формулы (1–3) задают архитектуру и алго-
ритм построения модульной мультитаргетной полно-
связной сверточной корреляционной нейронной сети  
на основе спектров энергий множественного докинга 
в несколько биомишеней, что было реализовано в виде 
оригинальной программы FCCorNet 2.2.25.

Множественный докинг соединений в реле-
вантные биомишени и формирование спектров 
энергий множественного докинга

На каждой валидной 3D-модели релевант-
ной биомишени с помощью оригинальной програм-
мы MSite 5.6.25 было построено по 27 пространств  
для множественного докинга, охватывающих весь 
объем данного белка-мишени (рис. 1).

Рис. 1. Построение пространств для множественного 
докинга на 3D-модели 3U7M пептиддеформилазы S. Aureus

Множественный ансамблевый докинг проводи-
ли с помощью программы AutoDock Vina 1.1.1, каж-
дое соединение в 10 конформерах в каждое простран-
ство докинга каждой валидной 3D-модели каждой  
релевантной биомишени, с вычислением по 50 полу-
ченным значениям минимальных энергий связывания 
ΔE. Указанную процедуру повторяли по 5 раз для каж-
дого пространства докинга. В итоге для каждого  
соединения был получен спектр из 27 × 5 = 135 значе-
ний ΔE для каждой релевантной биомишени и спектр 
из 135 × M значений ΔE, характеризующий интеграль-
ный мультитаргетный аффинитет соединений в отно-
шении M релевантных биомишеней.

В случае антибактериальной в отношении S. aureus 
активности формирование спектров энергий множе-
ственного докинга в 10 релевантных биомишени было  
проведено следующим образом. Сначала методами  
молекулярной механики и квантовой химии были по-
строены оптимизированные 3D-структуры 284 извест-
ных веществ, экспериментально изученных на антибак-
териальную S. aureus активность и структурно сходных 
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со скаффолдом хиназолинона. Затем среди 43 биомише-
ней S. aureus были найдены 10 биомишеней, релевант-
ных антибактериальной активности и для них найдены 
10 валидных 3D-моделей.

В случае анксиолитической активности форми-
рование спектров энергий множественного докинга 
было выполнено аналогичным образом в 22 релевант-
ных биомишени.

Построение по спектрам энергий множествен-
ного докинга модульных мультитаргетных полно-
связных сверточных корреляционных нейронных 
сетей, вычисление энергий построенных нейросе-
тей и формирование тестовых выборок

Построение модульной нейросети для каждо-
го вида модельной биологической активности выпол-
нялось в два этапа. Сначала для каждой релевантной  
биомишени m по полученной для N соединений ма-
трице аффинности из 27 × N значений энергий мно-
жественного докинга ΔElmi была рассчитана матрица 
парных корреляций Пирсона размерностью 27 × 27.  
По смыслу формулы (2), вычисленные значения Rmij 
есть веса синапсов полносвязной нейронной сети. 
Таким образом, полученные M корреляционных мат-
риц задают конкретные реализации M исходных пол-
носвязных сверточных корреляционных нейросетей  
первого уровня, а вычисленные по (2) показатели энер-
гии Wlm образуют матрицу данных для последующих 
вычислений размерностью N × M. Далее с использо-
ванием этой матрицы данных была рассчитана матри-
ца парных корреляций Пирсона размерностью M × M. 
По смыслу формулы (3), вычисленные значения R'ij 
есть веса синапсов модульной мультитаргетной пол-
носвязной сверточной корреляционной нейросети,  
а полученная корреляционная матрица задает кон-
кретную реализацию этой сети. Рассчитанные по (3)  
значения энергии Vl образуют основной параметр, ха-
рактеризующий соответствие объекта l эталону, сфор-
мированному построенной нейросетью. По своему  
физическому смыслу, этот параметр является инте-
гральной метрикой аффинности лиганда l к совокуп-
ности M релевантных биомишеней. Примеры архитек-
тур указанных нейросетей приведены на рис. 2.

Полученные показатели энергии Vl были подверг-
нуты кластерному анализу методом k-средних в про-
грамме Statistica 7 отдельно для каждого вида модельной 
биологической активности. В результате для каждо-
го вида активности было определено граничное значе-
ние V0, разделяющее соединения с достаточно высо-
ким мультитаргетным аффинитетом (индекс LevVl = 1, 
если Vl > V0) от низко аффинных соединений (индекс 
LevVl = 0, если Vl < V0). При формировании тестовых 
выборок целевой переменной служил индекс LevAl 
наличия/отсутствия у данного соединения достаточно 
высокого (высокого или умеренного) уровня анализи-
руемой активности, принимает значения 1/0.

Рис. 2. Архитектуры полносвязных сверточных 
корреляционных нейронных сетей  

на основе множественного докинга: 
а – сеть первого уровня для 27 энергий докинга;  

б – модульная сеть для 10 биомишеней, релевантных 
антибактериальной S. aureus активности

Оценка точности модульных нейросетей
Корреляционный анализ. Зависимости уровней 

каждого вида активности от уровней энергии V (3) их 
модульных сверточных нейросетей оценивали с помо-
щью коэффициента корреляции Гудмана – Краскела.

Однофакторный дисперсионный анализ. Для каж-
дого вида активности был выполнен однофакторный 
дисперсионный анализ (ANOVA) влияния указанных 
факторов (биологических активностей) на энергии их 
модульных сверточных нейросетей V (3). Для каждого 
сравнения рассчитаны величины критерия Фишера.

Пороговая классификация. С использованием гра-
ничных значений энергии модульных сверточных ней-
росетей V0, разделяющих достаточно аффинные и низ-
ко аффинные соединения, для каждого вида активности 
была вычислена точность классификации Acc, выполнен 
ROC-анализ и рассчитана площадь под кривой AUC.

Для всех полученных показателей точности была 
определена их статистическая достоверность p.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ  
И ИХ ОБСУЖДЕНИЕ
Для антибактериальной S. aureus активности опре-

делено следующее граничное значение энергии модуль-
ной нейросети, разделяющее достаточно аффинные  
и низко аффинные соединения: V0 > 266. Для анкси-
олитической активности определено следующее гра-
ничное значение энергии модульной нейросети, раз-
деляющее достаточно аффинные и низко аффинные  
соединения: V0 > 153.

В табл. приведены результаты оценки точно-
сти моделей для прогноза высокой антибактериаль-
ной S. aureus активности и высокой анксиолитической 
активности химических соединений, построенных с ис-
пользованием архитектуры модульной мультитаргетной 
полносвязной сверточной нейронной сети на основе  
корреляционной свертки спектров энергий множе-
ственного докинга. Полученные данные доказывают  
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С целью сравнительной иллюстрации высокой точ-
ности предлагаемого подхода для соединений двух тех 
же самых тестовых выборок с использованием широко  
известной системы PASS [12] был выполнен прогноз  
антибактериальной и анксиолитической активностей, 
рассчитаны значения точности классификации Acc и оп-
ределена их статистическая достоверность p. Для анти-
бактериальной активности точность прогноза в PASS  
составила Acc = 54,9 %, что соответствует p = 1,24 × 10-1. 
Для анксиолитической активности точность прогноза  
в PASS составила Acc = 30,3 %, что вообще ниже точно-
сти случайной классификации и соответствует p = 1,00. 
В обоих случаях показатели точности классификации 
Acc в системе PASS статистически незначимы и соответ-
ствующие им значения p превышают минимальный по-
рог значимости p = 0,05. В отличие от этих результатов, 
показатели точности классификации Acc предлагаемого  
подхода статистически очень высоко достоверны и со-
ответствующие им значения p намного меньше самого 
строгого порога значимости p = 0,001.

Таким образом, на примере двух видов активно-
сти, S. aureus антибактериальной и анксиолитической, 
показано, что разработанная оригинальная модуль-
ная мультитаргетная полносвязная сверточная ней-
ронная сеть на основе корреляционной свертки спек-
тров энергий множественного докинга в релевантные 
биомишени является высокоточным подходом, кото-
рый может быть рекомендован как новый метод искус-
ственного интеллекта для поиска in silico биологиче-
ски активных веществ.

ЗАКЛЮЧЕНИЕ
Разработана новая архитектура модульной муль-

титаргетной полносвязной сверточной нейронной сети  

на основе корреляционной свертки спектров энергий 
множественного докинга в совокупность релевантных 
биомишеней.

Методами многомерной статистики на приме-
ре антибактериальной S. aureus активности и анксио-
литической активности доказана высокая валидность  
и статистическая достоверность нового оригинально-
го подхода для прогноза in silico биологической ак-
тивности химических соединений. Новый метод ис-
кусственного интеллекта может быть рекомендован  
для создания моделей зависимостей различных ви-
дов системной мультитаргетной биологической актив-
ности от показателей интегральной аффинности хи-
мических соединений и поиска с применением этих  
моделей новых соединений с высокой активностью.
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высокую статистическую достоверность применения 
указанной нейронной сети для поиска in silico биологи-
чески активных веществ.

Следует отметить, что точность и достоверность 
прогноза антибактериальной S. aureus активности 

превышает точность и достоверность прогноза анксио-
литической активности. Вероятно, это связано с более  
сложным системным мультитаргетным механизмом  
реализации психотропных эффектов, в сравнении с анти- 
бактериальным действием химических соединений.

Показатели точности моделей с архитектурой модульной мультитаргетной полносвязной сверточной 
нейронной сети на основе корреляционной свертки спектров энергий множественного докинга

Показатель  
точности

Модель антибактериальной  
S. aureus активности

Модель анксиолитической  
активности

значение  
показателя p1 значение  

показателя p1
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Дисперсионный критерий Фишера F 2 39,2 1,43 × 10-9 30,0 6,68 × 10-8

Точность прогноза Acc 3, % 78,9 3,44 × 10-12 61,3 1,18 × 10-4

Площадь под кривой в ROC анализе AUC 3, % 0,747 2,24 × 10-9 0,613 1,13 × 10-4

1 Статистическая достоверность значения показателя; 2 для однофакторного дисперсионного анализа; 3 для пороговой классификации.
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