Regression model for managing technical risks of production energy supply

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We explored various aspects of technical risk management in industrial energy supply, including the identification of key factors influencing the occurrence of risks, methods for analyzing and predicting technical risks, and risk management strategies to ensure production continuity. Considering regression models in the context of technical risk management will help businesses to develop effective strategies to prevent potential threats and ensure operational stability and reliability.

Толық мәтін

Рұқсат жабық

Авторлар туралы

R. Pigilova

FSBEI HE Kazan State Power Engineering University (FSBEI HE KSPEU)

Хат алмасуға жауапты Автор.
Email: rozapigilova@yandex.ru

Lecturer

Ресей, Kazan, Republic of Tatarstan

F. Rakhmonov

FSBEI HE Kazan State Power Engineering University (FSBEI HE KSPEU)

Email: rahmonovfarhod2004@gmail.com

Student

Ресей, Kazan, Republic of Tatarstan

Әдебиет тізімі

  1. Svalova V.B., Zaalishvili V.B., Ganapathy G.P., Ivanov P.G., Sustainable Development of Mountain Territories, 2020, vol. 12, no. 1(43), pp. 162–170. doi: 10.21177/1998-4502-2020-12-1-162-170. EDN KEZQHF.
  2. Pigilova R.N., International Journal of Advanced Studies in Computer Engineering, 2023, no. 2, pp. 31–35. EDN PPEAAW.
  3. Malysheva T.V., Kompetentnost’, 2020, no. 4, pp. 24–27.
  4. Kamasheva A.I., Pigilova R.N. Ecology and life safety, XXII Int. sc. and pract. conf., ed. by V.A. Seleznev, I.A. Lukshin, Penza, PGAU, 2022, pp. 138–141. EDN ZKUHNI.
  5. Certificate of state registration of the computer program N 2020666077 RF. Separated scalable system for collecting, processing, searching and analyzing data Technology for analyzing and collecting information TAIS N 2020665421; decl. 27.11.2020; publ. 4.12.2020, I.A. Karpov, S.A. Abakhov, M.A. Pendyukhov; applicant LLC Analytical software solutions. EDN UCIHFU.
  6. Altunin S.S., Mezhdunarodnyy nauchnyy studencheskiy zhurnal, 2019, no. 8, pp. 23–25. EDN OHQARD.
  7. Federal State Statistics Service; http://www.gks.ru/.
  8. Johnson S., Energy Management Journal, 2020, vol. 18, pp. 75–89.
  9. Spivak N.S., E-Scio, 2019, no. 6(33), pp. 742–749. EDN ZNGJRA.
  10. Bulatov T.A. Automatic analysis of the state of high-voltage electric motors in own needs system of a thermal power plant, XXVI All-Russian postgraduate and master’s scientific seminar dedicated to the Day of the power engineer, in 3 vol., gen. ed. by E.Yu. Abdullazyanov, Kazan’, KGEU, 2023, vol. 1, pp. 13–15. EDN XYZDOB.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Evolution of types of organization for determining technical risks

Жүктеу (31KB)
3. Fig. 2. Typical scheme of a technological radio network for data exchange and collection in a control system

Жүктеу (45KB)
4. Fig. 3. Factors to consider when choosing a regression model

Жүктеу (8KB)
5. Fig. 4. Energy consumption management and regression analysis of data on risky inflows from the base in multifunctional systems

Жүктеу (19KB)

© АСМС, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).