Gyrostat Motion in the Light Flow of Semi-Euclidean Space
- Authors: Makeev N.N.
- Issue: No 1 (68) (2025)
- Pages: 52-66
- Section: Mechanics
- URL: https://journals.rcsi.science/1993-0550/article/view/326432
- DOI: https://doi.org/10.17072/1993-0550-2025-1-52-66
- EDN: https://elibrary.ru/achxhc
- ID: 326432
Cite item
Full Text
Abstract
The motion of a gyrostat in a stationary field of light pressure forces in semi-Euclidean space is investigated. A gyrostat with kinetic axial symmetry and a constant gyrostatic moment moves so that its carrier rotates around the center of inertia. The field of light pressure forces is generated by a stationary light flux of constant intensity, formed by parallel rays of light, and is assumed to be conservative. Based on an improved thermomechanical model of the dynamic interaction of light radiation with a solid surface, a dynamic system is constructed and the limited problem of studying motion of a special type is considered. As a result of applying an affine transformation of the variables determining the motion of the gyrostat, exact solutions to the problem of integrating a dynamic gyrostat system in a conservative field of light pressure forces were obtained. Two modes of gyrostat motion and their analog interpretation are considered.
About the authors
N. N. Makeev
Author for correspondence.
Email: n_makeyev@mail.ru
Doctor of Physical and Mathematical Sciences, Professor
Russian FederationReferences
- Kogan, A. Yu. and Kirsanova, T. S. (1992), "Termomekhanicheskie yavleniya v dvizhenii otnositel`no tsentra mass kosmicheskogo apparata s solnechnym stabilizatorom", Kosmicheskie issledovaniy, vol. 30, issue 3, pp. 312-320.
- Makeev, N. N. (2024), "Dvizhenie girostata vokrug tsentra inertsii v poluevklidovom prostranstve", Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, issue 2 (65), pp. 42-53. doi: 10.17072/1993-0550-2024-2-42-53. Russia.
- Kharlamov, P. V. (1965), "O resheniyakh uravneniy dinamiki tverdogo tela", Prikladnaya matematika i mekhanika, vol. 29, issue 3, pp. 567-572.
- Kharlamova, E. I. (1965), "Nekotorye resheniya zadachi o dvizhenii tela, imeyushchego zakreplennuyu tochku", Prikladnaya matematika i mekhanika, vol. 29, issue 4, pp. 733-737.
- Makeev, N. N. (2023), "K zadache privedeniya uravneniy dinamiki tverdogo tela v giperbolicheskom prostranstve", Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, issue 4 (63), pp. 70-79. doi: 10.17072/1993-0550-2023-4-70-79. Russia.
- Uitteker, E. T. and Vatson, Dzh. N. (1963), "Kurs sovremennogo analiza. V 2 Ch." [A course in modern analysis. In 2 parts], Fizmatgiz, Moscow, Ch.2, 516 pp. Russia.
- Kamke, E. (1961), "Spravochnik po obyknovennym differentsial`nym uravneniyam", Fizmatgiz, Moscow, 704 pp. Russia.
Supplementary files
