О сходимости численного решения задач оптимального управления для систем уравнений леонтьевского типа
- Авторы: Свиридюк Г.А.1, Келлер А.В.1
 - 
							Учреждения: 
							
- Южно-Уральский государственный университет
 
 - Выпуск: Том 15, № 2 (2011)
 - Страницы: 24-33
 - Раздел: Статьи
 - URL: https://journals.rcsi.science/1991-8615/article/view/21005
 - ID: 21005
 
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Георгий Анатольевич Свиридюк
Южно-Уральский государственный университет
														Email: ridyu@mail.ru
				                					                																			                								(д.ф.-м.н., проф.), зав. кафедрой, каф. уравнений математической физики; Южно-Уральский государственный университет				                														
Алевтина Викторовна Келлер
Южно-Уральский государственный университет
														Email: alevtinak@inbox.ru
				                					                																			                								(к.ф.-м.н., доц.), зав. кафедрой, каф. общеобразовательных дисциплин; Южно-Уральский государственный университет				                														
Список литературы
- Sviridyuk G. A., Fedorov V. E. Linear Sobolev type equations and degenerate semigroups of operators / Inverse and Ill-posed Problems Series. Utrecht - Boston - Koln - Tokyo: VSP, 2003. 216 pp.
 - Свиридюк Г. А., Брычев С. В. Численное решение систем уравнений леонтьевского типа // Изв. вузов. Матем., 2003. No 8. С. 46-52
 - Леонтьев В. В. Межотраслевая экономика. М.: Экономика, 1997. 315 с.
 - Свиридюк Г. А., Бурлачко И. В. Алгоритм решения задачи Коши для вырожденных линейных систем обыкновенных дифференциальных уравнений с постоянными коэффициентами // Ж. вычисл. матем. и матем. физ., 2003. Т. 43, No 11. С. 1677-1683.
 - Павлов Б. В., Повзнер А. Я. Об одном методе численного интегрирования систем обыкновенных дифференциальных уравнений // Ж. вычисл. матем. и матем. физ., 1973. Т. 13, No 4. С. 1056-1059.
 - Павлов Б. В., Радионова О. Е. Метод локальной линеаризации при численном решении жёстких систем обыкновенных дифференциальных уравнений // Ж. вычисл. матем. и матем. физ., 1987. Т. 27, No 5. С. 688-699.
 - Павлов Б. В., Родионова О. Е. Численное решение систем линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами // Ж. вычисл. матем. и матем. физ., 1994. Т. 34, No 4. С. 622-627.
 - Брычев С. В. Исследование математической модели экономики коммунального хозяйства малых городов: Дис. ... канд. физ.-мат. наук: 05.13.18: защищена 12.02.02: утв. 24.06.02. Челябинск, 2002. 124 с.
 - Бурлачко И. В. Исследование оптимального управления системами леонтьевского типа: Дис. ... канд. физ.-мат. наук: 05.13.18: защищена 12.02.02: утв. 24.06.02. Челябинск, 2005. 123 с.
 - Свиридюк Г. А., Федоров В. Е. Линейные уравнения соболевского типа. Челябинск: Челяб. гос. ун-т, 2003. 179 с.
 - Келлер А. В. Алгоритм численного решения задачи Шоуолтера-Сидорова для систем леонтьевского типа / В сб.: Методы оптимизации и их приложения: Труды XIV Байкальской школы-семинара. Иркутск - Северобайкальск, 2008. С. 343-350.
 - Свиридюк Г. А., Ефремов А. А. Задача оптимального управления для одного класса линейных уравнений типа Соболева // Изв. вузов. Матем., 1996. No 12. С. 75-83.
 - Свиридюк Г. А., Ефремов А. А. Оптимальное управление линейными уравнениями типа Соболева с относительно p-секториальными операторами // Диференц. уравн., 1995. Т. 31, No 11. С. 1912-1919
 
Дополнительные файлы
				
			
						
					
									
