Analytical formula and numerical calculation of the second harmonic of dynamic susceptibility in concentrated ferrofluids
- Authors: Rusanov M.S.1
-
Affiliations:
- Ural Federal University named after the first President of Russia B. N. Yeltsin
- Issue: Vol 29, No 2 (2025)
- Pages: 347-362
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://journals.rcsi.science/1991-8615/article/view/349675
- DOI: https://doi.org/10.14498/vsgtu2124
- EDN: https://elibrary.ru/NBPKKD
- ID: 349675
Cite item
Full Text
Abstract
In this work, the second component of dynamic susceptibility of an ensemble of interacting magnetic particles is studied by using analytical and numerical methods. The configuration of superimposed magnetic fields is considered: alternating and parallel constant fields. Dipole-dipole interactions are taken into account within two-particle correlations using a modified first-order mean-field theory approach.
From the analytical solution of the Fokker–Planck equation, an expression for the second harmonic is obtained as a function of two parameters: the Langevin susceptibility $\chi_L$, which characterizes dipole-dipole interactions, and the Langevin parameter $\xi_0$, representing the ratio of magnetic energy to thermal energy.
The obtained expression for the second harmonic agrees with previously known results where interparticle interactions were neglected. This research has significant theoretical interest and can be used for more precise characterization of magnetic particle properties.
Full Text
##article.viewOnOriginalSite##About the authors
Mikhail S. Rusanov
Ural Federal University named after the first President of Russia B. N. Yeltsin
Author for correspondence.
Email: mikhail.rusanov@urfu.ru
ORCID iD: 0000-0001-7439-8179
SPIN-code: 9081-7507
Scopus Author ID: 57306389700
ResearcherId: JNS-8758-2023
https://www.mathnet.ru/rus/person229346
Research Engineer; Lab. of Mathematical Modeling of Physicochemical Processes in Multiphase Media; Dept. of Mathematics, Mechanics and Computer Science; Institute of Natural Sciences and Mathematics
Russian Federation, 620002, Ekaterinburg, Mira st., 19References
- Rosensweig R. E. Ferrohydrodynamics. New York, Cambridge, 1998, 344 pp.
- Al-Areqi A. R., Xiaogang Y., Renpeng Y., et al. Synthesis of zinc ferrite particles with high saturation magnetization for magnetic induction hyperthermia, J. Magn. Magnet. Mater., 2023, vol. 579, 170839. DOI: https://doi.org/10.1016/j.jmmm.2023.170839.
- Kritika, Indrajit R. Therapeutic applications of magnetic nanoparticles: recent advances, Material. Advances, 2022, vol. 3, no. 20, pp. 7425–7444. DOI: https://doi.org/10.1039/D2MA00444E.
- Stueber D. D., Villanova J., Aponte I., et al. Magnetic nanoparticles in biology and medicine: Past, present, and future trends, Pharmaceutics, 2021, vol. 13, no. 7, 943. DOI: https://doi.org/10.3390/pharmaceutics13070943.
- Lucaciu C. M., Nitica S., Fizesan I., et al. Enhanced magnetic hyperthermia performance of zinc ferrite nanoparticles under a parallel and a transverse bias DC magnetic field, Nano-materials, 2022, vol. 12, pp. 419–588. DOI: https://doi.org/10.3390/nano12203578.
- Rusanov M. S., Kuznetsov M. A., Zverev V. S., Elfimova E. A. Influence of a bias dc field and an ac field amplitude on the dynamic susceptibility of a moderately concentrated ferrofluid, Phys. Rev. E, 2023, vol. 108, no. 2, 024607. EDN: LVREAX. DOI: https://doi.org/10.1103/PhysRevE.108.024607.
- Ivanov A. O., Camp P. J. How particle interactions and clustering affect the dynamic magnetic susceptibility of ferrofluids, J. Magn. Magnet. Mater., 2023, vol. 586, 171216. EDN: LXFRGI. DOI: https://doi.org/10.1016/j.jmmm.2023.171216.
- Lebedev A. V., Stepanov V. I., Kuznetsov A. A., et al. Dynamic susceptibility of a concentrated ferrofluid: The role of interparticle interactions, Phys. Rev. E, 2019, vol. 100, no. 3. EDN: JOCHQF. DOI: https://doi.org/10.1103/PhysRevE.100.032605.
- Debye P. Polar Molecules. New York, Chemical Catalog, 1929, 174 pp.
- Raikher Y. L., Stepanov V. I. Nonlinear dynamic susceptibilities and field-induced birefringence in magnetic particle assemblies, In: Advances in Chemical Physics, vol. 129, 2004, pp. 419–588. EDN: OGWEAD. DOI: https://doi.org/10.1002/047168077x.ch4.
- Ivanov A. O., Zverev V. S. Kantorovich S. S. Revealing the signature of dipolar interactions in dynamic spectra of polydisperse magnetic nanoparticles, Soft Matter, 2016, vol. 12, no. 15, pp. 3507–3513. EDN: XMDERI. DOI: https://doi.org/10.1039/c5sm02679b.
- Rusanov M. S., Zverev V. S., Elfimova E. A. Third harmonic of the dynamic magnetic susceptibility of a concentrated ferrofluid: Numerical calculation and simple approximation formula, Phys. Rev. E, 2024, vol. 110, no. 3, pp. 034605. EDN: UYCLLS. DOI: https://doi.org/10.1103/PhysRevE.110.034605.
- Rusanov M. S., Zverev V. S., Elfimova E. A. Influence of a bias dc field and an ac field amplitude on the dynamic susceptibility of a moderately concentrated ferrofluid, Phys. Rev. E, 2023, vol. 108, no. 2, 024607. EDN: LVREAX. DOI: https://doi.org/10.1103/PhysRevE.108.024607.
- Yoshida T., Enpuku K. Simulation and quantitative clarification of AC susceptibility of magnetic fluid in nonlinear Brownian relaxation region, Japan. J. Appl. Phys., 2009, vol. 48, no. 12R, 127002. DOI: https://doi.org/10.1143/JJAP.48.127002.
- Batrudinov T. M., Ambarov A. V., Elfimova E. A., et al. Theoretical study of the dynamic magnetic response of ferrofluid to static and alternating magnetic fields, J. Magn. Magnet. Mater., 2017, vol. 431, pp. 180–183. EDN: YUTRGN. DOI: https://doi.org/10.1016/j.jmmm.2016.09.094.
- Coffey W. T., Kalmyko Y. P., Nijun W. Nonlinear normal and anomalous response of non-interacting electric and magnetic dipoles subjected to strong AC and DC bias fields, Nonlinear Dyn., 2015, vol. 80, pp. 1861–1867. EDN: UOECOZ. DOI: https://doi.org/10.1007/s11071-014-1488-9.
- Déjardin J.-L., Debiais G., Ouadjou A. On the nonlinear behavior ofdielectric relaxation in alternating fields. II. Analytic expressions of the nonlinearsusceptibilities, J. Chem. Phys., 1993, vol. 98, no. 10, pp. 8149–8153. DOI: https://doi.org/10.1063/1.464570.
- Ivanov A. O., Kuznetsova O. B. Magnetic properties of denseferrofluids: An influence of interparticlecorrelations, Phys. Rev. E, 2001, vol. 64, no. 4, 041405. EDN: WJQLGO. DOI: https://doi.org/10.1103/PhysRevE.64.041405.
- Afanaseva N. M., Vabishchevich P. N., Vasileva M. V. Unconditionally stable schemes for convection-diffusion problems, Russian Math. (Iz. VUZ), 2013, vol. 57, no. 3, pp. 1–11. EDN: RFDQXP. DOI: https://doi.org/10.3103/S1066369X13030018.
- Ambarov A. V., Zverev V. S., Elfimova E. A. Numerical modeling of the magnetic response of interacting superparamagnetic particles to an ac field with arbitrary amplitude, Modelling Simul. Mater. Sci. Eng., 2020, vol. 28, no. 8, 085009. EDN: PCMKHA. DOI: https://doi.org/10.1088/1361-651X/abbfbb.
- Ambarov A. V., Zverev V. S., Elfimova E. A. Influence of field amplitude and dipolar interactions on the dynamic response of immobilized magnetic nanoparticles: Perpendicular mutual alignment of an alternating magnetic field and the easy axes, Phys. Rev. E, 2023, vol. 107, no. 2, 024601. EDN: ZNXBCM. DOI: https://doi.org/10.1103/PhysRevE.107.024601.
Supplementary files





