Polymorphism of Risperidone in Supercritical Fluid Processes of Micronization and Encapsulation into Aliphatic Polyesters
- 作者: Bagratashvili V.N.1,2, Bogorodskiy S.E.1, Egorov A.M.2, Krotova L.I.1, Mironov A.V.1, Parenago O.O.2,3, Pokrovskiy O.I.3, Ustinovich K.B.3, Chizhov P.S.2, Prokopchuk D.I.4, Popov V.K.1, Tsypina S.I.1
-
隶属关系:
- Federal Research Center Crystallography and Photonics, Institute of Photonic Technologies
- Faculty of Chemistry
- Kurnakov Institute of General and Inorganic Chemistry
- Immanuel Kant Baltic Federal University
- 期: 卷 11, 编号 7 (2017)
- 页面: 1163-1172
- 栏目: Article
- URL: https://journals.rcsi.science/1990-7931/article/view/200010
- DOI: https://doi.org/10.1134/S199079311707003X
- ID: 200010
如何引用文章
详细
The specific features of the transformation of risperidone polymorphs as a result of micronization and encapsulation into aliphatic polyesters (polylactides and polylactoglycolide) have been studied using supercritical (SC) carbon dioxide. It has been shown that the micronization of risperidone, which originally is polymorph A, via the rapid expansion of supercritical solutions (RESS) and the supercritical antisolvent (SAS) precipitation leads to its crystallization in less thermodynamically stable polymorph B. This transition is complete for SAS and only partial for RESS. When these micronized samples are encapsulated into polylactides and polylactoglycolides via the formation of particles from gas-saturated solutions (PGSS) and monolithization with further cryogrinding (MCG), risperidone polymorph B is partially converted back into polymorph A. At the same time, the micronization of initial risperidone polymorph A via cryogrinding and its further PGSS and MCG encapsulation into polylactides or polylactoglycolides does not result in any change in the polymorphic state of risperidone, and it always remains in initial polymorph A.
作者简介
V. Bagratashvili
Federal Research Center Crystallography and Photonics, Institute of Photonic Technologies; Faculty of Chemistry
编辑信件的主要联系方式.
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Troitsk, Moscow, 119333; Moscow, 119991
S. Bogorodskiy
Federal Research Center Crystallography and Photonics, Institute of Photonic Technologies
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Troitsk, Moscow, 119333
A. Egorov
Faculty of Chemistry
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Moscow, 119991
L. Krotova
Federal Research Center Crystallography and Photonics, Institute of Photonic Technologies
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Troitsk, Moscow, 119333
A. Mironov
Federal Research Center Crystallography and Photonics, Institute of Photonic Technologies
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Troitsk, Moscow, 119333
O. Parenago
Faculty of Chemistry; Kurnakov Institute of General and Inorganic Chemistry
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Moscow, 119991; Moscow, 119991
O. Pokrovskiy
Kurnakov Institute of General and Inorganic Chemistry
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Moscow, 119991
K. Ustinovich
Kurnakov Institute of General and Inorganic Chemistry
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Moscow, 119991
P. Chizhov
Faculty of Chemistry
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Moscow, 119991
D. Prokopchuk
Immanuel Kant Baltic Federal University
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Kaliningrad, 236016
V. Popov
Federal Research Center Crystallography and Photonics, Institute of Photonic Technologies
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Troitsk, Moscow, 119333
S. Tsypina
Federal Research Center Crystallography and Photonics, Institute of Photonic Technologies
Email: victor.bagratashvili@gmail.com
俄罗斯联邦, Troitsk, Moscow, 119333
补充文件
