Modeling of Electron and Proton Transport in Chloroplast Membranes with Regard to Thioredoxin-Dependent Activation of the Calvin–Benson Cycle and ATP Synthase


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, the analysis of electron and proton transport in chloroplasts of higher plants has been carried out on the basis of a mathematical model, which takes into account the pH-dependent regulation of electron transfer and thioredoxin-dependent activation of the Calvin–Benson cycle (CBC) enzymes and the ATP synthase. The impact of reduced thioredoxin on the kinetics of electron transport, pH changes in the intrathylakoid space and ATP production has been simulated. Comparison of the computed and experimental data on the kinetics of P700 photooxidation has shown that the consideration of thioredoxin-dependent activation of the CBC and the ATP synthase provides an adequate description of the multiphase kinetics of P700+ induction. The dynamics of electron flow through PSI and the partitioning of electron fluxes on the acceptor site of PSI has been simulated. The model predicts that at the initial stage of the induction period the alternative pathways, cyclic electron transport around PSI and electron flow to O2 (the Mehler reaction), play a significant role in photosynthetic electron transport chain, but their contribution attenuates upon the activation of the CBC reactions.

Sobre autores

A. Vershubskii

Faculty of Physics

Email: an_tikhonov@mail.ru
Rússia, Moscow, 119991

S. Nevyantsev

Faculty of Physics

Email: an_tikhonov@mail.ru
Rússia, Moscow, 119991

A. Tikhonov

Faculty of Physics

Autor responsável pela correspondência
Email: an_tikhonov@mail.ru
Rússia, Moscow, 119991


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies