Radially Symmetric Solutions of the p-Laplace Equation with Gradient Terms


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the Dirichlet problem for the p-Laplace equation with nonlinear gradient terms. In particular, these gradient terms cannot satisfy the Bernstein—Nagumo conditions. We obtain some sufficient conditions that guarantee the existence of a global bounded radially symmetric solution without any restrictions on the growth of the gradient term. Also we present some conditions on the function simulating the mass forces, which allow us to obtain a bounded radially symmetric solution under presence of an arbitrary nonlinear source.

作者简介

Ar. Tersenov

Sobolev Institute of Mathematics; Novosibirsk State University

编辑信件的主要联系方式.
Email: aterseno@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018