Radially Symmetric Solutions of the p-Laplace Equation with Gradient Terms
- 作者: Tersenov A.S.1,2
-
隶属关系:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- 期: 卷 12, 编号 4 (2018)
- 页面: 770-784
- 栏目: Article
- URL: https://journals.rcsi.science/1990-4789/article/view/213135
- DOI: https://doi.org/10.1134/S1990478918040178
- ID: 213135
如何引用文章
详细
We consider the Dirichlet problem for the p-Laplace equation with nonlinear gradient terms. In particular, these gradient terms cannot satisfy the Bernstein—Nagumo conditions. We obtain some sufficient conditions that guarantee the existence of a global bounded radially symmetric solution without any restrictions on the growth of the gradient term. Also we present some conditions on the function simulating the mass forces, which allow us to obtain a bounded radially symmetric solution under presence of an arbitrary nonlinear source.
作者简介
Ar. Tersenov
Sobolev Institute of Mathematics; Novosibirsk State University
编辑信件的主要联系方式.
Email: aterseno@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
补充文件
