On Stability of the Inverted Pendulum Motion with a Vibrating Suspension Point


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Under study is the stability of the inverted pendulum motion whose suspension point vibrates according to a sinusoidal law along a straight line having a small angle with the vertical. Formulating and using the contracting mapping principle and the criterion of asymptotic stability in terms of solvability of a special boundary value problem for the Lyapunov differential equation, we prove that the pendulum performs stable periodic movements under sufficiently small amplitude of oscillations of the suspension point and sufficiently high frequency of oscillations.

Sobre autores

G. Demidenko

Sobolev Institute of Mathematics; Novosibirsk State University

Autor responsável pela correspondência
Email: demidenk@math.nsc.ru
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

A. Dulepova

Novosibirsk State University

Email: demidenk@math.nsc.ru
Rússia, ul. Pirogova 2, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018