A discrete algorithm for localizing the discontinuity lines of a function of two variables


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider an ill-posed problem of localizing the discontinuity lines of a function of two variables. It is assumed that, instead of a precisely given function f, the values are available of the averages on the square of the perturbed function fδ at the points of a uniform grid as well as the error level δ so that \({\left\| {f - {f^\delta }} \right\|_{{L_2}}}{(_\mathbb{R}}^2)\) ≤ δ. An algorithm is constructed for localizing the discontinuity lines, its convergence is proved with the estimates of the approximation accuracy, which coincide in the order of magnitude with the estimates obtained earlier by the authors for the case when, instead of the average values of the function fδ, the function itself is given. Also, we substantiate the estimates for an important characteristic of localization methods, i.e. separability threshold.

Sobre autores

A. Ageev

Krasovskii Institute of Mathematics and Mechanics

Autor responsável pela correspondência
Email: ageev@imm.uran.ru
Rússia, ul. S. Kovalevskoi 16, Ekaterinburg, 620990

T. Antonova

Krasovskii Institute of Mathematics and Mechanics

Email: ageev@imm.uran.ru
Rússia, ul. S. Kovalevskoi 16, Ekaterinburg, 620990

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017