A discrete algorithm for localizing the discontinuity lines of a function of two variables


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider an ill-posed problem of localizing the discontinuity lines of a function of two variables. It is assumed that, instead of a precisely given function f, the values are available of the averages on the square of the perturbed function fδ at the points of a uniform grid as well as the error level δ so that \({\left\| {f - {f^\delta }} \right\|_{{L_2}}}{(_\mathbb{R}}^2)\) ≤ δ. An algorithm is constructed for localizing the discontinuity lines, its convergence is proved with the estimates of the approximation accuracy, which coincide in the order of magnitude with the estimates obtained earlier by the authors for the case when, instead of the average values of the function fδ, the function itself is given. Also, we substantiate the estimates for an important characteristic of localization methods, i.e. separability threshold.

作者简介

A. Ageev

Krasovskii Institute of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: ageev@imm.uran.ru
俄罗斯联邦, ul. S. Kovalevskoi 16, Ekaterinburg, 620990

T. Antonova

Krasovskii Institute of Mathematics and Mechanics

Email: ageev@imm.uran.ru
俄罗斯联邦, ul. S. Kovalevskoi 16, Ekaterinburg, 620990

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017