On the Complexity of the Vertex 3-Coloring Problem for the Hereditary Graph Classes With Forbidden Subgraphs of Small Size


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The 3-coloring problem for a given graph consists in verifying whether it is possible to divide the vertex set of the graph into three subsets of pairwise nonadjacent vertices. A complete complexity classification is known for this problem for the hereditary classes defined by triples of forbidden induced subgraphs, each on at most 5 vertices. In this article, the quadruples of forbidden induced subgraphs is under consideration, each on atmost 5 vertices. For all but three corresponding hereditary classes, the computational status of the 3-coloring problem is determined. Considering two of the remaining three classes, we prove their polynomial equivalence and polynomial reducibility to the third class.

Об авторах

D. Sirotkin

National Research University Higher School of Economics; Lobachevsky State University of Nizhny Novgorod

Автор, ответственный за переписку.
Email: dmitriy.v.sirotkin@gmail.com
Россия, ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155; pr. Gagarina 23, Nizhny Novgorod, 603950

D. Malyshev

National Research University Higher School of Economics; Lobachevsky State University of Nizhny Novgorod

Email: dmitriy.v.sirotkin@gmail.com
Россия, ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155; pr. Gagarina 23, Nizhny Novgorod, 603950

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).