On the Analytic Solutions of a Special Boundary Value Problem for a Nonlinear Heat Equation in Polar Coordinates


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper addresses a nonlinear heat equation (the porous medium equation) in the case of a power-law dependence of the heat conductivity coefficient on temperature. The equation is used for describing high-temperature processes, filtration of gases and fluids, groundwater infiltration, migration of biological populations, etc. The heat waves (waves of filtration) with a finite velocity of propagation over a cold background form an important class of solutions to the equation under consideration. A special boundary value problem having solutions of such type is studied. The boundary condition of the problem is given on a sufficiently smooth closed curve with variable geometry. The new theorem of existence and uniqueness of the analytic solution is proved.

Авторлар туралы

A. Kazakov

Matrosov Institute for System Dynamics and Control Theory

Хат алмасуға жауапты Автор.
Email: kazakov@icc.ru
Ресей, ul. Lermontova 134, Irkutsk, 664033

P. Kuznetsov

Irkutsk State University

Email: kazakov@icc.ru
Ресей, ul. Karla Marksa 1, Irkutsk, 664033

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018