On the Analytic Solutions of a Special Boundary Value Problem for a Nonlinear Heat Equation in Polar Coordinates


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The paper addresses a nonlinear heat equation (the porous medium equation) in the case of a power-law dependence of the heat conductivity coefficient on temperature. The equation is used for describing high-temperature processes, filtration of gases and fluids, groundwater infiltration, migration of biological populations, etc. The heat waves (waves of filtration) with a finite velocity of propagation over a cold background form an important class of solutions to the equation under consideration. A special boundary value problem having solutions of such type is studied. The boundary condition of the problem is given on a sufficiently smooth closed curve with variable geometry. The new theorem of existence and uniqueness of the analytic solution is proved.

Об авторах

A. Kazakov

Matrosov Institute for System Dynamics and Control Theory

Автор, ответственный за переписку.
Email: kazakov@icc.ru
Россия, ul. Lermontova 134, Irkutsk, 664033

P. Kuznetsov

Irkutsk State University

Email: kazakov@icc.ru
Россия, ul. Karla Marksa 1, Irkutsk, 664033

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).