Local primitivity of matrices and graphs


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We develop a matrix-graph approach to the estimation of the communicative properties of a system of connected objects. In particular, this approach can be applied to analyzing the mixing properties of iterative cryptographic transformations of binary vector spaces, i.e. dependence of the output block bits on the input bits. In some applied problems, the saturation of the connections between the objects corresponds to the required level if the matrix modeling the connections or its certain submatrix is positive (the graph modeling the connections or its certain subgraph is complete). The concepts of local primitivity and local exponents of a nonnegative matrix (graph) are introduced. These concepts generalize and expand the area of application as compared to the familiar concepts of primitivity and exponent.We obtain a universal criterion for the local primitivity of a digraph and both a universal bound for the local exponents and its refinements for various particular cases. The results are applied to analyzing the mixing properties of a cryptographic generator constructed on the basis of two shift registers.

Об авторах

V. Fomichev

Financial University under the Government of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Автор, ответственный за переписку.
Email: fomichev@nm.ru
Россия, Leningradskii pr. 49, Moscow, 125993; Kashirskoe sh. 31, Moscow, 115409

S. Kyazhin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Special Development Center of the Ministry of Defence of the Russian Federation

Email: fomichev@nm.ru
Россия, Kashirskoe sh. 31, Moscow, 115409; ul. Svobody 21, Moscow, 125362

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).