Exact pseudopolynomial algorithms for a balanced 2-clustering problem
- Авторы: Kel’manov A.V.1,2, Motkova A.V.2
-
Учреждения:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Выпуск: Том 10, № 3 (2016)
- Страницы: 349-355
- Раздел: Article
- URL: https://journals.rcsi.science/1990-4789/article/view/212408
- DOI: https://doi.org/10.1134/S1990478916030054
- ID: 212408
Цитировать
Аннотация
We consider the strongly NP-hard problem of partitioning a set of Euclidean points into two clusters so as to minimize the sum (over both clusters) of the weighted sum of the squared intracluster distances from the elements of the clusters to their centers. The weights of sums are the sizes of the clusters. The center of one cluster is given as input, while the center of the other cluster is unknown and determined as the average value over all points in the cluster (as the geometric center). Two variants of the problems are analyzed in which the cluster sizes are either given or unknown. We present and prove some exact pseudopolynomial algorithms in the case of integer components of the input points and fixed space dimension.
Об авторах
A. Kel’manov
Sobolev Institute of Mathematics; Novosibirsk State University
Автор, ответственный за переписку.
Email: kelm@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
A. Motkova
Novosibirsk State University
Email: kelm@math.nsc.ru
Россия, ul. Pirogova 2, Novosibirsk, 630090
Дополнительные файлы
