A fully polynomial-time approximation scheme for a sequence 2-cluster partitioning problem
- Авторы: Kel’manov A.V.1,2, Khamidullin S.A.1, Khandeev V.I.1
-
Учреждения:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Выпуск: Том 10, № 2 (2016)
- Страницы: 209-219
- Раздел: Article
- URL: https://journals.rcsi.science/1990-4789/article/view/212331
- DOI: https://doi.org/10.1134/S199047891602006X
- ID: 212331
Цитировать
Аннотация
We consider a strongly NP-hard problem of partitioning a finite sequence of points in Euclidean space into the two clustersminimizing the sum over both clusters of intra-cluster sums of squared distances from the clusters elements to their centers. The sizes of the clusters are fixed. The centroid of the first cluster is defined as the mean value of all vectors in the cluster, and the center of the second cluster is given in advance and equals 0. Additionally, the partition must satisfy the restriction that for all vectors in the first cluster the difference between the indices of two consequent points from this cluster is bounded from below and above by some given constants.We present a fully polynomial-time approximation scheme for the case of fixed space dimension.
Ключевые слова
Об авторах
A. Kel’manov
Sobolev Institute of Mathematics; Novosibirsk State University
Автор, ответственный за переписку.
Email: kelm@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
S. Khamidullin
Sobolev Institute of Mathematics
Email: kelm@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090
V. Khandeev
Sobolev Institute of Mathematics
Email: kelm@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090
Дополнительные файлы
