Poloidal-Toroidal Decomposition of Solenoidal Vector Fields in the Ball


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Under study is the polynomial orthogonal basis system of vector fields in the ball which corresponds to the Helmholtz decomposition and is divided into the three parts: potential, harmonic, and solenoidal. It is shown that the decomposition of a solenoidal vector field with respect to this basis is a poloidal-toroidal decomposition (the Mie representation). In this case, the toroidal potentials are Zernike polynomials, whereas the poloidal potentials are generalized Zernike polynomials. The polynomial system of toroidal and poloidal vector fields in a ball can be used for solving practical problems, in particular, to represent the geomagnetic field in the Earth’s core.

Sobre autores

S. Kazantsev

Sobolev Institute of Mathematics

Autor responsável pela correspondência
Email: kazan@math.nsc.ru
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090

V. Kardakov

Novosibirsk State University of Architecture and Civil Engineering

Email: kazan@math.nsc.ru
Rússia, ul. Leningradskaya 113, Novosibirsk, 630113

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019