A method for solving an exterior three-dimensional boundary value problem for the Laplace equation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We develop and experimentally study the algorithms for solving three-dimensionalmixed boundary value problems for the Laplace equation in unbounded domains. These algorithms are based on the combined use of the finite elementmethod and an integral representation of the solution in a homogeneous space. The proposed approach consists in the use of the Schwarz alternating method with consecutive solution of the interior and exterior boundary value problems in the intersecting subdomains on whose adjoining boundaries the iterated interface conditions are imposed. The convergence of the iterative method is proved. The convergence rate of the iterative process is studied analytically in the case when the subdomains are spherical layers with the known exact representations of all consecutive approximations. In this model case, the influence of the algorithm parameters on the method efficiency is analyzed. The approach under study is implemented for solving a problem with a sophisticated configuration of boundaries while using a high precision finite elementmethod to solve the interior boundary value problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated with some numerical experiments.

Sobre autores

A. Savchenko

Institute of Computational Mathematics and Mathematical Geophysics

Autor responsável pela correspondência
Email: savch@ommfao1.sscc.ru
Rússia, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090

V. Il’in

Institute of Computational Mathematics and Mathematical Geophysics; Novosibirsk State University

Email: savch@ommfao1.sscc.ru
Rússia, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

D. Butyugin

Novosibirsk State University

Email: savch@ommfao1.sscc.ru
Rússia, ul. Pirogova 2, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016