Development and efficiency analysis of slag criteria during steel casting
- Authors: Poleshchenko D.A.1, Korenev A.V.1
-
Affiliations:
- Stary Oskol technological institute n.a. A.A. Ugarov (branch) NUST «MISIS»
- Issue: No 114 (2025)
- Pages: 273-290
- Section: Control of technological systems and processes
- URL: https://journals.rcsi.science/1819-2440/article/view/291943
- ID: 291943
Cite item
Full Text
Abstract
About the authors
Dmitry Aleksandrovich Poleshchenko
Stary Oskol technological institute n.a. A.A. Ugarov (branch) NUST «MISIS»
Email: po-dima@yandex.ru
Stary Oskol
Artem Viktorovich Korenev
Stary Oskol technological institute n.a. A.A. Ugarov (branch) NUST «MISIS»
Email: korenev01@mail.ru
Stary Oskol
References
- ЕРЕМЕНКО Ю.И., ПОЛЕЩЕНКО Д.А. О разработке и промышленной апробации системы отсечки шлака при разливке стали // Известия высших учебных заведе-ний. Черная металлургия. – 2019. – Т. 62, №5. – С. 353–359.
- КРИВОНОСОВ В.А., МИТИН А.С. Повышение точно-сти оценки уровней металла в стальковше и промковше МНЛЗ с использованием нелинейного наблюдателя со-стояния // Вестник Воронежского государственного тех-нического университета. – 2010. – Т. 6, №4. – С. 41–45.
- ПОЛЕЩЕНКО Д.А., КОРЕНЕВ А.В. Разработка метода раннего распознавания шлака сталеразливочного ковша машины непрерывного литья заготовок // Управление большими системами. – 2024. – Вып. 107. – С. 121–141.
- СЕМЕНОВ М.В., КРАСИЛЬНИКОВ С.С., ШВИДЧЕН-КО Д.В. и др. Вибродетектирование шлака при сливе стали из стальковша в промежуточный ковш // Автома-тизированные технологии и производства. – 2015. – №2. – С. 40–42.
- ALSHARABI K., BIN SALAMAH Y., AB-DURRAQEEB A.M. et al. EEG signal processing for Alz-heimer’s disorders using discrete wavelet transform and ma-chine learning approaches // IEEE Access. – 2022. – Vol. 10. – P. 89781–89797.
- BELKACEMI B., SAAD S., GHEMARI Z. et al. Detection of induction motor improper bearing lubrication by discrete wavelet transforms (DWT) decomposition // Instrum. Mes. Metrol. – 2020. – Vol. 19, No. 5. – P. 347–354.
- CHAKRABORTY A., GHOSE J., CHAKRABORTY S. et al. Vision-based detection system of slag flow from ladle to tun-dish with the help of the detection of undulation of slag layer of the tundish using an image analysis technique // Ironmak-ing & Steelmaking. – 2022. – Vol. 49, No. 1. – P. 10–15.
- CHEN D., XIAO H., JI Q. Vibration style ladle slag detec-tion method based on discrete wavelet decomposition // The 26th Chinese Control and Decision Conference (CCDC-2014). – IEEE, 2014. – P. 3019–3022.
- GUO T., ZHANG T., LIM E. et al. A review of wavelet anal-ysis and its applications: Challenges and opportunities // IEEE Access. – 2022. – Vol. 10. – P. 58869–58903.
- GÜVENÇ M.A., KAPUSUZ H., MISTIKOĞLU S. Experi-mental study on accelerometer-based ladle slag detection in continuous casting process // The Int. Journal of Advanced Manufacturing Technology. – 2020. – Vol. 106. – P. 2983–2993.
- KAPUSUZ H., GÜVENÇ M.A., MISTIKOĞLU S. A review study on ladle slag detection technologies in continuous casting process // Int. Advanced Researches and Engineering Journal. – 2019. – Vol. 3, No. 3. – P. 144–149.
- LOUHENKILPI S. Continuous casting of steel // Treatise on Process Metallurgy. – Elsevier, 2014. – P. 373–434.
- NISHAT T.R., KIM J.M. Bearing fault classification of in-duction motors using discrete wavelet transform and ensem-ble machine learning algorithms // Applied Sciences. – 2020. – Vol. 10, No. 15. – 5251.
- POUYANI M.F., VALI M., GHASEMI M.A. Lung sound signal denoising using discrete wavelet transform and artifi-cial neural network // Biomedical Signal Processing and Control. – 2022. – Vol. 72. – 103329.
- TAN D.P., JI S.M., LI PEIYU et al. Development of vibration style ladle slag detection methods and the key technologies // Science China. Technological Sciences. 2010. – Vol. 53, No. 9. – P. 2378–2387.
- TAN D.P., LI P.Y., JI Y.X. et al. SA-ANN-based slag carry-over detection method and the embedded WME platform // IEEE Trans. on Industrial Electronics. – 2012. – Vol. 60, No. 10. – P. 4702–4713.
- WAHAB M.F., O'HAVER T.C. Wavelet transforms in sepa-ration science for denoising and peak overlap detection // Journal of Separation Science. – 2020. – Vol. 43, No. 9–10. – P. 1998–2010.
- WANG M.H., LU S.D., LIAO R.M. Fault diagnosis for pow-er cables based on convolutional neural network with chaot-ic system and discrete wavelet transform // IEEE Trans. on Power Delivery. – 2021. – Vol. 37, No. 1. – P. 582–590.
- WANG Y., LI Z., WANG C. et al. Implementation of discrete wavelet transform // 12th IEEE Int. Conf. on Solid-State and Integrated Circuit Technology (ICSICT). – IEEE, 2014. – P. 1–3.
- YOUNGWORTH R.N., GALLAGHER B.B., STAMPER B.L. An overview of power spectral density (PSD) calculations // Optical Manufacturing and Testing VI. – 2005. – Vol. 5869. – P. 206–216.
- ZHANG Z., BIN L., JIANG Y. Slag detection system based on infrared temperature measurement // Optik. – 2014. – Vol. 125, No. 3. – P. 1412–1416.
Supplementary files
